INSTITUT D'ASTROPHYSIQUE DE PARIS

Celebrating 40 years of Milgromian dynamics

University of St Andrews

Dipolar Dark Matter

& +

Luc Blanchet

Gravitation et Cosmologie $(\mathcal{GR}\mathcal{ECO})$ Institut d'Astrophysique de Paris

9 juin 2023

Plan of the talk

- 1 The MOND empirical formula
- 2 Modified gravity theory based on the Khronon
- 3 The dielectric analogy of MOND
- 4 Dipolar dark matter in general relativity
- 5 Test of MOND in the Solar System

THE MOND EMPIRICAL FORMULA

3/43

Challenges with Λ -CDM at galactic scales

[McGaugh & Sanders 2004; Famaey & McGaugh 2012]

The Λ -CDM paradigm is very successful in cosmological perturbations but faces important challenges when compared to observations at galactic scales

Unobserved predictions

- Numerous but unseen satellites of large galaxies
- Phase-space correlation of galaxy satellites
- Generic formation of dark matter cusps in galaxies
- Tidal dwarf galaxies dominated by dark matter

2 Unpredicted observations

- Correlation between mass discrepancy and acceleration
- Surface brightness of galaxies and the Freeman limit
- Flat rotation curves of galaxies
- Baryonic Tully-Fisher relation for spirals
- Faber-Jackson relation for ellipticals

The MOND formula [Milgrom 1983abc; Bekenstein & Milgrom 1984]

The previous challenges are mysteriously solved by the MOND empirical formula

$$\boxed{ \boldsymbol{\nabla} \cdot \left[\ \, \underbrace{\mu \bigg(\frac{g}{a_0} \bigg)}_{\text{MOND function}} \boldsymbol{g} \right] = -4\pi \, G \, \rho_{\text{baryon}} \quad \text{with} \quad \boldsymbol{g} = \boldsymbol{\nabla} \boldsymbol{U} }$$

- The Newtonian regime is recoved when $g \gg a_0$
- lacksquare In the MOND regime $g\ll a_0$ we have $\left|\mu\simeq g/a_0
 ight|$

Different approaches to the dark matter problem

Faced with the "unreasonable effectiveness" of the MOND empirical formula three solutions are possible

- 1 Standard: MOND could be explained within the CDM paradigm
- 2 Modified Gravity: There is a fundamental modification of the law of gravity in a regime of weak gravity
 - Tensor-vector-scalar theory (TeVeS) [Bekenstein 2004; Sanders 2005]
 - Khronon theory [Blanchet & Marsat 2011; Sanders 2011]
 - Aether-scalar-tensor theory [Skordis & Zlosnik 2021; see the talk by Costantinos Skordis]
- Modified Dark Matter: The law of gravity is not modified but DM is endowed with new properties able to explain the phenomenology of MOND

Luc Blanchet (IAP) DM at galactic scales St Andrews 6/43

Importance of matching the standard cosmology

Luc Blanchet (IAP) DM at galactic scales St Andrews 7/43

MODIFIED GRAVITY THEORY BASED ON THE KHRONON

Non-canonical Einstein-Æther theories

These theories were introduced as a phenomenological approach to Lorentz-invariance violation [Jacobson & Mattingly 2001]

Lagrange multiplier constraint

$$S_{\mathcal{E}} = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R + K \left[g, V \right] + \lambda \left(g^{\mu\nu} V_{\mu} V_{\nu} + 1 \right) \right]$$

2 Here K[g,V] represents the most general Lagrangian density that is quadratic in the derivatives of the vector field V^μ

$$K = K^{\mu\nu\rho\sigma} \nabla_{\mu} \underline{V_{\rho}} \nabla_{\nu} \underline{V_{\sigma}}$$

$$K^{\mu\nu\rho\sigma} = c_1 g^{\mu\nu} g^{\rho\sigma} + c_2 g^{\mu\rho} g^{\nu\sigma} + c_3 g^{\mu\sigma} g^{\nu\rho} + c_4 \underline{V^{\mu} V^{\nu}} g^{\rho\sigma}$$

 \blacksquare Vector k-essence generalization of Einstein-Æther theories

[Zlosnik, Ferreira & Starkman 2007; Halle, Zhao & Li 2008]

$$S_{k\text{-essence }E} = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R + \frac{F(K)}{F(K)} + \lambda \left(g^{\mu\nu} \frac{V_{\mu} V_{\nu}}{V_{\nu}} + 1 \right) \right]$$

where F(K) is related in fine to the MOND function

From the Æther to the Khronon [Jacobson 2010; Blanchet & Marsat 2011]

The vector field is chosen to be hypersurface orthogonal

$$n_{\mu} = -N\partial_{\mu} \mathbf{\tau}$$

where τ is a dynamical scalar field called the Khronon and where

$$N = \frac{1}{\sqrt{-g^{\rho\sigma}\partial_{\rho}\tau\partial_{\sigma}\tau}}$$

We have at our disposal the acceleration of the congruence of worldlines n_μ orthogonal to the foliation

$$\boxed{\mathbf{a}_{\mu} = n^{\nu} \nabla_{\nu} n_{\mu} = \mathbf{D}_{\mu} \ln N}$$

Since MOND is a modification of gravity in the weak-acceleration regime it is natural to build a theory using the acceleration vector a^{μ}

Simple relativistic MOND theory [Blanchet & Marsat 2011; Sanders 2011]

- **I** The dynamical degrees of freedom consist of the metric $g_{\mu\nu}$, the Khronon τ and the matter fields Ψ (essentially the baryons)
- 2 The covariant formulation of the theory reads

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R - 2 \frac{f(a)}{a} \right] + S_m \left[\Psi, g \right]$$

where f(a) is a function of the covariant acceleration squared $a \equiv \sqrt{a_{\mu}a^{\mu}}$

$$a \equiv \sqrt{a_{\mu}a^{\mu}}$$

3 Varying with respect to the metric yields the modified Einstein field equation

$$G^{\mu\nu} + f(a)g^{\mu\nu} + 2n^{\mu}n^{\nu}\nabla_{\rho}[\chi(a)a^{\rho}] - 2\chi(a)a^{\mu}a^{\nu} = 8\pi T^{\mu\nu}$$

where we pose $\chi(a) = \frac{f'(a)}{2a}$.

4 Varying with respect to the Khronon gives $abla_{\mu}S^{\mu}=0$ where

$$S^{\mu} = N \Big[n^{\mu} \nabla_{\nu} \left(\chi \, a^{\nu} \right) - \chi \, a^{\mu} n^{\nu} \nabla_{\nu} \ln N \Big]$$

Luc Blanchet (IAP) DM at galactic scales St Andrews 11 / 43

Simple relativistic MOND theory [Blanchet & Marsat 2011; Sanders 2011]

II The theory can be described in adapted coordinates where t= au and the metric takes the standard 3+1 form

$$ds^2 = -(N^2 - N_i N^i) dt^2 + 2N_i dt dx^i + \gamma_{ij} dx^i dx^j$$

2 The theory involves then only N, N_i , γ_{ij} as dynamical variables $(a_\mu = D_\mu \ln N)$ and we have

$$S = \frac{1}{16\pi} \int d^4x \sqrt{\gamma} N \left[\mathcal{R} + K_{ij} K^{ij} - K^2 - 2 f(a) \right] + S_m[N, N_i, \gamma_{ij}, \Psi]$$

The field equations are equivalent to the covariant equations and one of them plays the role of a modified Poisson equation

$$D_i \left[(1+\chi)a^i \right] + f + a^2 - \frac{1}{N} D_t K - K^{ij} K_{ij} = 4\pi \left(\varepsilon + \frac{2}{N} N_i J^i + \mathcal{T} \right)$$

4 In this coordinate system the theory exhibits a violation of Lorentz invariance

Luc Blanchet (IAP) DM at galactic scales St Andrews 12 / 43

Non relativistic limit and MOND

Use the usual post-Newtonian ansatz for the metric

$$N = 1 + \frac{\phi}{c^2} + \mathcal{O}\left(\frac{1}{c^4}\right) ,$$

$$N_i = \mathcal{O}\left(\frac{1}{c^3}\right) ,$$

$$\gamma_{ij} = \delta_{ij}\left(1 - \frac{2\psi}{c^2}\right) + \mathcal{O}\left(\frac{1}{c^4}\right)$$

 $\mathbf{2}$ From the ij components of the Einstein field equation we obtain

$$\phi = \psi + \mathcal{O}\left(\frac{1}{c^2}\right)$$

which implies that the light deflection and gravitational lensing are given by the same formula as in GR

In the non-relativistic limit the acceleration reduces to the Newtonian one

$$a^i = \partial_i \phi + \mathcal{O}\left(\frac{1}{c^4}\right)$$

Non relativistic limit and MOND

I The equation satisfied by the Newtonian potential ϕ is given by

$$\partial_i \left[(1+\chi) \, \partial_i \phi \right] = 4\pi G \rho + \mathcal{O}\left(\frac{1}{c^2}\right)$$

which takes the MOND form with MOND function $\mu=1+\chi$

- 2 The Khronon equation imposes the constraint that the system should be stationary: $\dot{\phi}=0$ [Flanagan 2023]
- The theory reproduces the MOND phenomenology in the low acceleration regime for stationary systems and GR plus a cosmological constant for high accelerations with the function

$$f(a) = \begin{cases} \Lambda & \text{when } a \gg a_0 \\ -a^2 + \frac{2a^3}{3a_0} + \mathcal{O}\left(a^4\right) & \text{when } a \ll a_0 \end{cases}$$

However this theory does not reproduce the dark matter we see at cosmological scales [Blanchet & Skordis, in progress]

THE DIELECTRIC ANALOGY OF MOND

15 / 43

Electrostatics of dielectric media

In the presence of a polarization field the Gauss equation can be written as

$$egin{align*} oldsymbol{
abla} \cdot oldsymbol{E} &= rac{
ho_e +
ho_e^{
m polar}}{arepsilon_0} &\iff oldsymbol{
abla} \cdot egin{bmatrix} & ext{electric induction } oldsymbol{D} \ \hline oldsymbol{(1+\chi_e)E} \end{bmatrix} = rac{
ho_e}{arepsilon_0} \end{aligned}$$

The density of polarization charges is

$$\rho_e^{\mathrm{polar}} = -\nabla \cdot \mathbf{\Pi}_e$$

The polarization vector Π_e is aligned with the electric field

$$\Pi_e = \varepsilon_0 \chi_e E$$

16 / 43

where χ_e denotes the coefficient of electric susceptibility

Modified matter interpretation of MOND [Blanchet 2006]

1 The MOND equation in the form of a modified Poisson equation

$$\nabla \cdot \left[\underbrace{\mu \left(\frac{g}{a_0} \right)}_{\text{MOND function}} g \right] = -4\pi G \rho_{\mathsf{b}}$$

is analogous to the equation of electrostatics inside a dielectric. We pose

$$\mu=1+\underbrace{\chi(g)}_{\text{gravitational}}$$
 and $\underline{\Pi}_{\text{polarization}}=-rac{\chi}{4\pi\,G}\,g$

The MOND equation is equivalent to

$$\Delta U = -4\pi G \left(\rho_{\mathsf{b}} + \rho_{\mathsf{polar}} \right)$$

In this interpretation the Newtonian law of gravity is not violated but we are postulating a new form of DM consisting of polarization masses with density

$$ho_{
m polar} = -oldsymbol{
abla} \cdot oldsymbol{\Pi}$$

Luc Blanchet (IAP) DM at galactic scales St Andrews 17 /

Microscopic description of the digravitational DM?

Following the electrostatic analogy we suppose that

Dark matter consists of a digravitational medium made of individual gravitational dipole moments

$$\pi = m \xi$$

2 Each dipole moment is interpreted as a doublet of particles

$$(m_i, m_g) = (m, \pm m)$$

3 The polarization field is the density of dipole moments

$$\Pi = m n \xi$$

where n is the number density of the dipolar particles

Therefore the model involves negative gravitational masses so violates the equivalence principle at a fundamental level

Luc Blanchet (IAP) DM at galactic scales St Andrews 18/43

Microscopic description of the digravitational DM?

- The dipole moments tend to align in the same direction as the gravitational field thus $\chi < 0$ which is exactly what MOND predicts
- Since the constituents of the dipole will repel each other we need to invoke a non-gravitational force (i.e. a fifth force) to stabilize the dipolar medium

Gravitational anti-screening

Screening by polarization charges

 $\chi_e > 0$

Anti-screening by polarization masses

 $\chi < 0$

Equations of motion of dipolar particles

$$m \frac{\mathrm{d}^2 \mathbf{x}_+}{\mathrm{d}t^2} = m \mathbf{g}(\mathbf{x}_+) - \mathbf{F}(|\mathbf{x}_+ - \mathbf{x}_-|)$$
$$m \frac{\mathrm{d}^2 \mathbf{x}_-}{\mathrm{d}t^2} = -m \mathbf{g}(\mathbf{x}_-) + \mathbf{F}(|\mathbf{x}_+ - \mathbf{x}_-|)$$

where \mathbf{F} is an attractive non-gravitational force.

$$\mathbf{x} \equiv \frac{\mathbf{x}_+ + \mathbf{x}_-}{2}$$
 $\boldsymbol{\xi} \equiv \mathbf{x}_+ - \mathbf{x}_ \boldsymbol{\pi} = m \boldsymbol{\xi}$

$$2\frac{\mathrm{d}^{2}\mathbf{x}}{\mathrm{d}t^{2}} = (\boldsymbol{\xi} \cdot \boldsymbol{\nabla})\mathbf{g}$$

$$m\frac{\mathrm{d}^{2}\boldsymbol{\xi}}{\mathrm{d}t^{2}} = 2m\mathbf{g} - 2\mathbf{F}$$

The dipolar particles are accelerated by the tidal gravitational field and therefore are weakly influenced by the distribution of ordinary matter

Interpretation of the dark matter medium

I From the evolution equation of the dipole a situation of equilibrium is possible when the internal force compensates the gravitational force

$$\mathbf{F} = m \, \boldsymbol{g}$$

2 At equilibrium the dipole and polarization $\Pi=n\,\pi$ are aligned with the gravitational field. This provides a mechanism to verify the crucial relation

$$\Pi = -\frac{\chi}{4\pi G} g$$

Out of equilibrium we find that the dipole moment obeys the equation of an harmonic oscillator with plasma frequency

$$\frac{\mathrm{d}^2 \boldsymbol{\xi}}{\mathrm{d}t^2} + \boldsymbol{\omega}^2 \, \boldsymbol{\xi} = 2 \, \mathbf{g} \qquad \text{where} \qquad \boldsymbol{\omega} = \sqrt{-\frac{8\pi \, G \, m \, \boldsymbol{n}}{\chi}}$$

1 The DM medium is interpreted as the gravitational analogue of a plasma of particles with mass $(m_i, m_g) = (m, \pm m)$

Luc Blanchet (IAP) DM at galactic scales St Andrews 22 / 43

DIPOLAR DARK MATTER IN GENERAL RELATIVITY

23 / 43

Dipolar fluid in general relativity [Blanchet & Le Tiec 2008; 2009]

The total action in standard GR is of the type

$$S = \int \mathrm{d}^4 x \sqrt{-g} \, \left[\frac{c^3 R}{16\pi G} - \rho_{\rm b} \right] + S_{\rm DM}$$

Non-standard action for the dark matter

$$S_{\rm DM} = \int \mathrm{d}^4 x \sqrt{-g} \, L_{\rm DM} \left[J^{\mu}, \xi^{\mu}, \dot{\xi}^{\mu}, g_{\mu\nu} \right]$$

The current density J^{μ} and the dipole moment ξ^{μ} are two independent dynamical variables

■ The current density $J^{\mu} = \sigma u^{\mu}$ is conserved

$$\nabla_{\mu}J^{\mu}=0$$

The covariant time derivative is denoted

$$\dot{\xi}^{\mu} \equiv \frac{\mathrm{D}\xi^{\mu}}{\mathrm{d}\tau} = u^{\nu} \nabla_{\nu} \xi^{\mu}$$

24 / 43

Luc Blanchet (IAP) DM at galactic scales St Andrews

Lagrangian for the dipolar fluid [Blanchet & Le Tiec 2008; 2009]

$$S_{\mathsf{DM}} = \int \mathrm{d}^4 x \sqrt{-g} \, \left[-\sigma + J^{\mu} \dot{\xi}_{\mu} - \mathcal{W}(\Pi_{\perp}) \right]$$

- **I** Mass term σ in an ordinary sense (like for ordinary CDM)
- 2 Interaction term between the fluid's mass current $J^{\mu}=\sigma u^{\mu}$ and the dipole moment
- Potential term $\mathcal W$ describing an internal force and depending on the norm of the polarization $\Pi_\perp = \sigma \, \xi_\perp$

One easily proves that the only dynamical degrees of freedom of the dipole moment are the space-like projection orthogonal to the velocity

$$\xi^{\mu}_{\perp} = \perp^{\mu}_{\nu} \xi^{\nu}$$
 where the projector is $\perp^{\mu}_{\nu} = \delta^{\mu}_{\nu} + u^{\mu} u_{\nu}$

Hence the dipole vector moment is always space-like (in contract with modified gravity theory where the vector is time-like)

Luc Blanchet (IAP) DM at galactic scales St Andrews

Equations of motion and evolution

Variation with respect to ξ^{μ}

Equation of motion of the dipolar fluid

$$\underline{\dot{u}^{\mu}} = -\mathcal{F}^{\mu}$$
 where $\mathcal{F}^{\mu} \equiv \hat{\xi}^{\mu}_{\perp} \, \mathcal{W}'$ non-geodesic motion dipolar internal force

Variation with respect to J^{μ}

Evolution equation of the dipole moment

$$\dot{\Omega}^{\mu} \quad = \quad \frac{1}{\sigma} \nabla^{\mu} \left(\mathcal{W} - \Pi_{\perp} \mathcal{W}' \right) - \underbrace{\xi^{\nu}_{\perp} \, R^{\mu}_{\ \rho \nu \sigma} u^{\rho} u^{\sigma}}_{\text{coupling to Riemann curvature}}$$

where
$$\Omega^{\mu} \equiv \dot{\xi}^{\mu}_{\perp} + u^{\mu} \left(1 + 2 \xi_{\perp} \mathcal{W}' \right)$$

Stress-energy tensor

Variation with respect to $g_{\mu\nu}$

$$\begin{array}{ll} T^{\mu\nu} &= \Omega^{(\mu}J^{\nu)} & \Longleftrightarrow \operatorname{monopolar} \operatorname{DM} \\ & -\nabla_{\rho} \left(\left[\Pi_{\perp}^{\rho} u^{(\mu} - u^{\rho} \Pi_{\perp}^{(\mu} \right] u^{\nu)} \right) & \Longleftrightarrow \operatorname{dipolar} \operatorname{DM} \\ & -g^{\mu\nu} \left(\mathcal{W} - \Pi_{\perp} \mathcal{W}' \right) & \Longleftrightarrow \operatorname{DE} \end{array}$$

The DM mass density is made of a monopolar term σ plus a dipolar term $-\nabla_{\mu}\Pi^{\mu}_{\perp}$ which appears as the relativistic analogue of the polarization mass density

$$\varepsilon \equiv u_{\mu} u_{\nu} T^{\mu\nu} = \underbrace{\sigma - \nabla_{\mu} \Pi_{\perp}^{\mu}}_{\text{DM energy density}} + \underbrace{\mathcal{W} - \Pi_{\perp} \mathcal{W}'}_{\text{DE}}$$

Luc Blanchet (IAP) DM at galactic scales St Andrews

27/43

The internal potential

The potential ${\cal W}$ is phenomenologically determined through third order

$$\mathcal{W} = \frac{\Lambda}{8\pi} + 2\pi \, \Pi_{\perp}^2 + \frac{16\pi^2}{3a_0} \, \Pi_{\perp}^3 + \mathcal{O}\left(\Pi_{\perp}^4\right)$$

- The minimum of that potential is the cosmological constant Λ and the third-order deviation from the minimum contains the MOND scale a_0
- In this unification scheme the natural order of magnitude of the cosmological constant should be comparable with a_0

Luc Blanchet (IAP) DM at galactic scales St Andrews 28/43

Cosmological perturbation at large scales

Consider a linear perturbation of the FLRW background. Since the dipole moment is space-like, it will break the spatial isotropy of the background, and must belong to the first-order perturbation

$$\xi_{\perp}^{\mu} = \mathcal{O}(1)$$

The stress-energy tensor reads $T^{\mu \nu} = T^{\mu \nu}_{ m de} + T^{\mu \nu}_{ m dm}$ where

- the DE is given by the cosmological constant Λ
- the DM takes the form of a perfect fluid with zero pressure

$$T_{\rm dm}^{\mu\nu} = \rho \, \tilde{u}^{\mu} \tilde{u}^{\nu} + \mathcal{O}(2)$$

Here $\tilde{u}^{\mu}=u^{\mu}-\mathcal{L}_{\xi_{+}}u^{\mu}$ denotes an effective four-velocity field and

$$\rho \equiv \sigma - \nabla_{\mu} \Pi^{\mu}_{\perp}$$

is the energy density of the DM fluid

Luc Blanchet (IAP) DM at galactic scales St Andrews 29 / 43

Agreement with the Λ -CDM scenario

The dipolar fluid is undistinguishable from

- standard DE (a cosmological constant)
- standard CDM (a pressureless perfect fluid)

at the level of first-order cosmological perturbations

Adjusting Λ so that $\Omega_{\rm de}\simeq 0.73$ and $\overline{\sigma}$ so that $\Omega_{\rm dm}\simeq 0.23$ the model is consistent with CMB fluctuations

Weak clustering of dipolar DM

- Baryonic matter follows the geodesic equation $\dot{u}^{\mu}=0$, therefore collapses in regions of overdensity
- Dipolar dark matter obeys $\dot{u}^{\mu}=-\mathcal{F}^{\mu}$, with the internal force \mathcal{F} balancing the gravitational field g created by an overdensity

The mass density of dipolar dark matter in a galaxy at low redshift should be smaller than the baryonic density and maybe close to its mean cosmological value

$$\sigma pprox \overline{\sigma} \ll
ho_{
m b}$$
 and $oldsymbol{v} pprox oldsymbol{0}$

Non-relativistic limit of the model

$$\mathcal{L}_{\mathsf{DDM}} = \sigma \bigg(\frac{\boldsymbol{v}^2}{2} + \boldsymbol{U} + \boldsymbol{g} \cdot \boldsymbol{\xi}_{\perp} + \boldsymbol{v} \cdot \frac{\mathrm{d} \boldsymbol{\xi}_{\perp}}{\mathrm{d} t} \bigg) - \mathcal{W}(\boldsymbol{\Pi}_{\perp}) + \mathcal{O}\left(\frac{1}{c^2}\right)$$

We recognize the gravitational analogue $g \cdot \Pi_{\perp}$ of the coupling of the polarization field to an exterior field

■ The equation of motion reads

$$\frac{\mathrm{d} \boldsymbol{v}}{\mathrm{d} t} = \boldsymbol{g} - \boldsymbol{\mathcal{F}}$$

■ The gravitational equation is

$$\nabla \cdot (\boldsymbol{g} - 4\pi \, \boldsymbol{\Pi}_{\perp}) = -4\pi \, (\rho_{\mathsf{b}} + \boldsymbol{\sigma})$$

Luc Blanchet (IAP) DM at galactic scales St Andrews 32 / 43

Recovering MOND in a galaxy at low red-shift

Crucial use is made of the weak clustering of dipolar DM

■ Using $\mathbf{v} \approx \mathbf{0}$ in the equation of motion

$$g = \mathcal{F} = \hat{\Pi}_{\perp} \, \mathcal{W}' \implies$$
 the dipolar medium is polarized

• Using $\sigma \ll \rho_b$ in the field equation

$$oldsymbol{
abla}\cdot \left|oldsymbol{g}-4\pi\,oldsymbol{\Pi}_{\perp}
ight| = -4\pi\,
ho_{
m b} \implies {
m the galaxy appears essentially baryonic}$$

Hence the MOND equation is recovered with MOND function $\mu=1+\chi$ such that

$$oldsymbol{g} = \hat{\Pi}_{\perp} \, \mathcal{W}' \quad \Longleftrightarrow \quad \Pi_{\perp} = -rac{\chi(g)}{4\pi} \, oldsymbol{g}$$

The model has recently been implemented numerically with the RAMSES code [Stahl, Montandon, Famaey, Hahn & Ibata 2022]

Luc Blanchet (IAP) DM at galactic scales St Andrews 33/43

TEST OF MOND IN THE SOLAR SYSTEM

34 / 43

What about the Solar System scale?

1 In spherical symmetry the MOND equation becomes

$$\frac{\mu\!\left(\frac{g}{a_0}\right)\,g=g_{\rm N}\equiv\frac{GM_\odot}{r^2}$$

Suppose MOND approaches the Newtonian regime like

$$\frac{\mu}{\left(\frac{g}{a_0}\right)} = 1 - k \, \left(\frac{\frac{a_0}{g}}{g}\right)^q \quad \text{when} \quad g \to \infty$$

With $r_0 = \sqrt{GM_{\odot}/a_0}$ the MOND transition radius for the Sun

$$g = g_{\mathsf{N}} + k \, a_{\mathsf{0}} \left(\frac{r}{r_{\mathsf{0}}}\right)^{2q-2}$$

When q = 1 this gives a Pioneer-like anomaly

$$a_{\mathsf{P}} = k \, a_{\mathsf{0}}$$

Luc Blanchet (IAP) DM at galactic scales St Andrews 35/43

Solar System data and Pioneer anomaly [Fienga et al. 2009]

The data exclude a Pioneer-like anomaly at the level $5 \times 10^{-13} \text{m/s}^2$

The external field effect in MOND [Milgrom 1983]

- \blacksquare Open star clusters in our Galaxy do not show evidence for dark matter despite their typical low internal gravity $g_{\rm i}\ll a_0$
- 2 In the presence of the external Galactic field $g_{\rm e}$ the MOND equation which is non-linear can be approximated by

$$\mu\left(rac{|oldsymbol{g_{\mathsf{i}}} + oldsymbol{g_{\mathsf{e}}}|}{a_0}
ight)oldsymbol{g_{\mathsf{i}}} pprox oldsymbol{g_{\mathsf{i}}^{\mathsf{Newtonian}}}$$

- When $a_0 \lesssim g_e$ the sub-system exhibits Newtonian behaviour
- When $g_i \lesssim g_e \lesssim a_0$ the system is still Newtonian but with an effective Newton's constant G/μ_e

The EFE results from a violation of the strong version of the equivalence principle

The gravitational dynamics of a system is influenced by the external gravitational field in which the system is embedded

Luc Blanchet (IAP) DM at galactic scales St Andrews 37/43

Deformation of the Sun's field by the Galactic field

The external field effect is a prediction of the non-linear Poisson equation

$$\nabla \cdot \left[\frac{\mu}{a_0} \left(\frac{g}{a_0} \right) \nabla U \right] = -4\pi \, G \, \rho_{\mathsf{b}}$$

The MOND field of the Sun, in the presence of the external field of the Galaxy, is deformed along the direction of the Galactic center

$$U = \mathbf{g_e} \cdot \mathbf{x} + \frac{GM_{\odot}/\mu_e}{r\sqrt{1 + \lambda_e \sin^2 \theta}} + \mathcal{O}\left(\frac{1}{r^2}\right)$$

This effect influences the motion of inner planets of the Solar System

Multipole expansion of the MOND field of the Sun

I The Newtonian physicist measures from the motion of planets the internal gravitational potential $u=U-g_{\rm e}\cdot x$ and detects the anomaly

$$\label{eq:deltau} \begin{split} \pmb{\delta u} &= u - u_{\rm N} = G \int \frac{\mathrm{d}^3 \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|} \, \rho_{\rm pdm}(\mathbf{x}',t) \end{split}$$

2 Since the phantom dark matter vanishes in the strong-field regime near the Sun δu is an harmonic function and admits the multipole expansion

$$\delta u = \sum_{l=0}^{+\infty} \frac{(-)^l}{l!} x^L Q_L$$

where Q_L are trace-free multipolar coefficients

3 This expansion is valid in the region inside the MOND transition radius

$$r_0 = \sqrt{\frac{GM_{\odot}}{a_0}} pprox 7100\,\mathrm{AU}$$

Luc Blanchet (IAP) DM at galactic scales St Andrews 39 / 43

Effect in the Solar System [Milgrom 2009, Blanchet & Novak 2011]

■ The effect is dominantly quadrupolar and grows with the distance squared

$$u = \frac{GM_{\odot}}{r} + \frac{1}{2}x^i x^j Q_{ij}$$

■ The quadrupole moment is aligned in the direction of the Galactic center

$$Q_{ij} = \frac{\mathbf{Q_2}}{\mathbf{Q_2}} \left(e_i e_j - \frac{1}{3} \delta_{ij} \right)$$

■ The quadrupole moment is computed by solving numerically the MOND equation in the presence of the external galactic field. We find

$$2.1 \times 10^{-27} \text{ s}^{-2} \lesssim Q_2 \lesssim 4.1 \times 10^{-26} \text{ s}^{-2}$$

depending on the MOND function in use

Luc Blanchet (IAP) DM at galactic scales St Andrews 40 /

Quadrupole moment as a function of distance

Quadrupole moment as a function of distance

Effect on the dynamics of Solar System planets

The quadrupole effect yields a suplementary precession of the semi-major axis of planets of the Solar System [Blanchet & Novak 2011]

$$\left\langle \frac{\mathrm{d}e}{\mathrm{d}t} \right\rangle = \frac{5Q_2 e \sqrt{1 - e^2}}{4n} \sin(2\tilde{\omega})$$

$$\left\langle \frac{\mathrm{d}\ell}{\mathrm{d}t} \right\rangle = n - \frac{Q_2}{12n} \left[7 + 3e^2 + 15(1 + e^2) \cos(2\tilde{\omega}) \right]$$

$$\left\langle \frac{\mathrm{d}\tilde{\omega}}{\mathrm{d}t} \right\rangle = \frac{Q_2 \sqrt{1 - e^2}}{4n} \left[1 + 5 \cos(2\tilde{\omega}) \right]$$

Luc Blanchet (IAP) DM at galactic scales St Andrews 42/43

Comparison with Solar System ephemerides

Predicted values for the orbital precession

Quadrupolar precession rate in mas/cy							
	Mercury	Venus	Earth	Mars	Jupiter	Saturn	
μ_1	0.04	0.02	0.16	-0.16	-1.12	5.39	
μ_2	0.02	0.01	0.09	-0.09	-0.65	3.12	
μ_5	7×10^{-3}	3×10^{-3}	0.03	-0.03	-0.22	1.05	
μ_{20}	2×10^{-3}	10^{-3}	9×10^{-3}	-9×10^{-3}	-0.06	0.3	

Best published residuals for orbital precession

Postfit residuals for the precession rates in mas/cy							
	Mercury	Venus	Earth	Mars	Jupiter	Saturn	
[Pitjeva 2005]	-3.6 ± 5	-0.4 ± 0.5	-0.2 ± 0.4	0.1 ± 0.5	-	-6 ± 2	
[Fienga et al. 2009]	-10 ± 30	-4 ± 6	0 ± 0.016	0 ± 0.2	142 ± 156	-10 ± 8	
[Fienga et al. 2010]	0.4 ± 0.6	0.2 ± 1.5	-0.2 ± 0.9	0 ± 0.1	-41 ± 42	0.2 ± 0.7	

Comparison with Solar System ephemerides

Predicted values for the orbital precession

	Quadrupolar precession rate in mas/cy							
	Mercury	Venus	Earth	Mars	Jupiter	Saturn		
μ_1	0.04	0.02	0.16	-0.16	-1.12	5.39		
μ_2	0.02	0.01	0.09	-0.09	-0.65	3.12		
μ_5	7×10^{-3}	3×10^{-3}	0.03	-0.03	-0.22	1.05		
μ_{20}	2×10^{-3}	10^{-3}	9×10^{-3}	-9×10^{-3}	-0.06	0.3		

Best published residuals for orbital precession

Postfit residuals for the precession rates in mas/cy							
	Mercury	Venus	Earth	Mars	Jupiter	Saturn	
[Pitjeva 2005]	-3.6 ± 5	-0.4 ± 0.5	-0.2 ± 0.4	0.1 ± 0.5	-	-6 ± 2	
[Fienga <i>et al.</i> 2009]	-10 ± 30	-4 ± 6	0 ± 0.016	0 ± 0.2	142 ± 156	-10 ± 8	
[Fienga et al. 2010]	0.4 ± 0.6	0.2 ± 1.5	-0.2 ± 0.9	0 ± 0.1	-41 ± 42	0.2 ± 0.7	

MOND (in the form proposed by [Bekenstein & Milgrom, 1984]) seems to be marginally excluded by planetary ephemerides