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MOND in a nutshell

A theory of dynamics (gravity/inertia) involving a new constant a0

‘Correspondence principle’: Standard limit (a0 → 0)

MOND limit: a0 → ∞: SI: (t, r)→ λ(t, r)

Many theories that embody these tenets

Primary predictions follow from only the basic tenets:

Vcirc → Vinf = const.; V4
inf = MGa0; RCs to a large extent; For DML

systems σ4
3d/MGa0 = A ∼ 1; enhanced stability of discs,
central-surface-densities-relation.

Secondary predictions do not follow from the axioms, and are
theory dependent: Exact RCs, dependence of MGa0/σ

4 on
dimensionless system parameters. Workings of the EFE, effects in

the SS, workings of dynamical friction, etc.

No fully satisfactory underlying theory
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Theory – directions

• Relativistic effective theories: Lensing, cosmology, structure

• “Microscopic” theories: Vacuum effects; Entropic gravity; Dipolar
DM; Superfluid DM; MOND from a membrane-picture; etc.

• Nonrelativistic effective theories:

◃ May point the way to relativistic and more fundamental ones.
◃ May teach us about the possible variety in secondary predic-

tions.

What is wrong with existing theories?

A single interpolating function of a single acceleration variable
introduced already in the action.

a. Leads to a very restricted situation where all phenomena are
described by the same single function of a single variable.
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b. This is anything but what happens in other instances (e.g.,
relativity or QM vs Newtonian dynamics

The “modified-gravity” theories AQUAL/QUMOND are, at present,
the NR MOND workhorses. But they are most probably not the final

word.
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Aims

My aim here is twofold

a. Acquaint you with some aspects of modified inertia

b. Demonstrate that there can be MOND theories that do not hinge
on a sigle function of a single variable, and that can differ

substantially from AQUAL/QUMOND on secondary predictions.

The issue is not MG vs. MI

There can also be a large variety among MG theories.
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Example: Tripotential MOND theories

L = − 1
8πG
{2∇⃗(ϕ − ϵφ) · ∇⃗ψ − a2

0F (x, y, z)} + ρ(
1
2

v2 − ϕ)

x ≡ (∇⃗ψ)2/a2
0, y ≡ (∇⃗φ)2/a2

0, z = 2∇⃗ψ · ∇⃗φ/a2
0

a = −∇⃗ϕ the MOND acceleration

∆ψ = 4πGρ is solved

φ gotten from an AQUAL equation, then ϕ from a Poisson

AQUAL and QUMOND are special cases

Deep MOND (scale inv.) : F (λ−4x, λ−2y, λ−3z) = λ−3F (x, y, z)

F (x, y, z) = x3/4F (1, y/x1/2, z/x3/4) = y3/2F (x/y2, 1, z/y3/2)
For 1-D systems gM = gNν(gN/a0), F ⇒ ν universal

Satisfies the same virial, two-body, M − σ as AQUAL/QUMOND
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What is (nonrelativistic) modified inertia?

Newtonian Lagrangian density : L = − 1
8πG

(∇⃗ϕ)2 − ρϕ + 1
2
ρv2

a = −∇⃗ϕ, ∇ϕ = 4πGρ
Modified gravity (AQUAL, QUMOND,...) modifies the first term.

“MI” modifies the last term to a functional of the trajectory

Possible “microscopic” origin of MI, perhaps of inertia itself

Mach’s principle, hidden inertia medium (the quantum vacuum?)

Need to modify the free actions of all degrees of freedom?

Perhaps then also the Einstein-Hilbert action

MOND needs to define an inertial frame with respect to which
accelerations are measured (quantum vacuum?)

Here treated as an effective theory that bypasses these deep
questions
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Who is afraid of modified inertia?

Much less activity on MI than on MG; why?

Developers: It seems more difficult to construct MI theories under
the standard requirement (symmetries, conservation laws, etc.)

Users: No full-fledged theory or model; existing models are harder
to solve; so fewer predictions (RCs), hard to simulate, etc.

But these by no means argue against MI

Physics can develop from easy to hard (for us):

GR is much harder than Newtonian gravity, QM much harder than
classical mechanics, Standard Model

Don’t reject MI because you do not feel comfortable with it!!

Don’t see MI as a threat to your existing work!!

MG simulations are still very useful: may capture the main features
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Special relativity as modified inertia

F =
md(γv)

dt
= mγ

(
1 + γ2v⊗v

c2

)
a = m

↔
µ
(v
c

)
a⇒

↔
ν
(v
c

)
F ≡ γ−1

(
1 − v⊗v

c2

)
F = ma.

↔
ν
−1 (

v
c

)
=
↔
µ
(

v
c

)
≡ γ(1 + γ2v⊗v

c2 ) is an “interpolation tensor”.

Circular orbits:
↔
µ = γ; Linear acceleration:

↔
µ = γ3

The Lorentz factor itself is an “interpolating function”; e.g., in time
dilations, etc.
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Some lessons

• The interpolating functions are not introduced “by hand” (follow
from Lorentz invariance).

• Different interpolating functions connect force and acceleration for
different phenomena:

↔
µ, Lorentz factor (V/c), GR (MG) Strong

gravity→ Newtonian gravity around a BH (MG/Rc2)

• No acceleration field is defined, only a dP
dt field.
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Quantum mechanics as modified inertia

“First quantization”: Leaves force fields intact; modifies the theory
governing particle motion.

r(t) ⇒ ψ(r, t)

Newtonian dynamics ⇒ Schrödinger equation

|ψ|2 as the probability

Spin and spin-statistics; etc.

Next, modify all actions field quantization, quantum field theory.
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Some lessons

• MOND could be much more drastic than just changing the field
equation or EoM.

E.g., degrees of freedom may be different

• Interpolating functions are not introduced at the fundamental level,
but different IFs emerge for different phenomena.

BB function: Rayleigh-Jean (~ ≪ kT/ν) ⇔Wien (~ ≫ kT/ν)

Atoms (L/~), quantization in a box (pl/~)

Specific heat of solids, Cv ∝ µ(αT/~) ⇔ µ(x ≫ 1) = const.
(classical Dulong-Petit limit).

• Different system characteristics with the dimensions of ~ may en-
ter.

• Very difficult to solve many-particle systems, even with simple po-
tentials, such as Coulomb’s.
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Instances of modified or acquired inertia in physics

Higgs, Electrons in solids, acoustic analogues

Dirac cones in graphene.
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Modified inertia in the context of MOND

(a) µ(a/a0)a = −∇⃗ϕ ??

(b) LK =
1
2

mµ(a/a0)v2 ??

• Both give µ(a/a0)a = aN for rotation curves

• (a) has Galilei invariance, (b) does not

• (b) has a conserved momentum, (a) does not (no action)

• Both still involve one function of one variable
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Some lower-tier phenomena where perhaps MI , MG

• Stronger EFE on outer galactic discs:

◃ Declining rotation curve (due to LSS)
◃ Inducement of the warps by satellites

• Galaxy-field effects in the solar system may be absent in MI.

• Stronger quenching EFE on vertical dynamics and wide-binary
dynamics.

• Dynamical friction?

• Gravitational waves

◃ In MI it is more natural for the path followed by GW (gravitons)
to be the same as that for photons.

◃ We would not necessarily expect additional gravitational DoFs
or modes of metric propagation.
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(Toy) models

Predictions not necessarily generic to MI; demonstrate possible
differences from existing MG theories

âN(ω) = m−1F̂(ω) ⇒ â(ω)I[{r̂}, ω, a0] = m−1F̂(ω) = âN(ω)

The “inertia functional”

I
a0→0
−→ 1; I

a0→∞−→ A[{r̂}, ω]/a0 (scale−invariant gravity)
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Conservation laws

dP
dt
= F(t) ⇔ iωP̂(ω) = F̂(ω)

P̂(ω) = mv̂(ω)I[{r̂}, ω, a0]

Isolated system:
∑

p Fp = 0 ⇒ d(
∑

p Pp)/dt = 0.

dEk/dt = v(t)·F(t) ⇒ Êk(ω) =
m
2π

∫
ω′

ω
v̂(ω−ω′)·v̂(ω′)I[{r̂}, ω′, a0]dω′

If the interbody forces are derivable from potentials, ϕpq(rpq) the total
energy ϕ + Ek is conserved (Ek =

∑
p Ek

p).

Similarly, we define the angular momentum

For high-acceleration trajectories, for which I → 1, P(t), Ek(t), and
J(t) reduce to the standard expressions, mv(t), (1/2)mv2(t), and

mr(t) × v(t), respectively.
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“Center of mass”

R̂(ω) =
∑

p Mpr̂p(ω)∑
p Mp

, Mp(ω) ≡ mpI[{r̂p}, ω, a0]

For an isolated system
d2R(t)

dt2 = 0

Reduced two-body problem in the deep-MOND regime

m̄â12(ω)
A12(ω)

a0
= F̂(ω), m̄ =

m1m2

(m1/2
1 + m1/2

2 )2

â12(ω) = (1+α−1)â1(ω), A12(ω) = (1+α−1)A1(ω), α = (m2/m1)1/2

Gravitating 2-body on a circular orbit

∆V4
12 = (q1/2

1 + q1/2
2 )2MGa0

Coefficient is different from that in AQUAL/QUMOND
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Harmonic oscillator (e.g., a constant-density sphere)

Harmonic motion with amplitude-dependent frequency

Uniqueness of solutions given “initial” position and velocity.
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Subclass

I[{r̂}, ω, a0] = µ̄
[
A1(ω)

a0
,
A2(ω)

a0
, ...

]

â(ω)µ̄
[
A1(ω)

a0
, ...

]
= âN(ω)

Different “interpolation functions” for different phenomena

Deep-MOND limit (a0 → ∞):

Scale invariance⇒ µ̄(x1, x2) becomes homogeneous of degree 1.

µ̄→ A1

a0
K(A2/A1)
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Examples

A1(ω) ∝
∫

θ1

(
ω′

ω

)
[r̂(ω′) · r̂∗(ω′)]1/2ω′2dω′

A2(ω) ∝
∫

θ2

(
ω′

ω

)
|r̂(ω′) · r̂(ω′)|1/2ω′2dω′

r(t) =
1
√

2
(r0eiω0t + r∗0e−iω0t) ⇒ r̂(ω) = [r0δ(ω − ω0) + r∗0δ(ω + ω0)]

r2(t) = r0 · r∗0 + |r0 · r0| cos (2ω0t + φ0)

Separation of frequencies? [θ(x) ∝ δ(x − 1)] No EFE!

ω independence of A? [θ(x) = Const.] Wrong CoM motion!

For correct CoM motion : θ(x)
x→∞−→ 0

[Normalize θ(1) = 1]

20



Rotation curves

Exact circular motion in an axisymmetric field⇒ A2 = 0. Only one
frequency; so only θ(1) enters.

Only acceleration parameter is A1 ∝ V2/R.

Normalize A1 so that

µ̄(A1/a0,A2 = 0) = µ(V2/Ra0)

µ it that appearing in rotation-curve analysis.

RCs inform us only to a small extent on the theory in general:
Here, only dependence on A1, and no information on θ(x)
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Rotation curves – effects of vertical motions

Vertical-motions can modify the prediction

µ

(
V2

Ra0

)
⇒ ∼ µ

[
V2

Ra0
+
ω2

zz0

a0
θ
(
ωzR
V

)]
; Note A2 , 0!!

Lowers V in inner parts; lowers Q parameter, etc. May lead to
somewhat different rotational V for different populations
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Rotation curves tests
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Vertical motions in a disc

Again, in the ‘simple’ case of only A1 (but note that here A2 , 0)

µ[gz + grθ(ωr/ωz)]
?
=µ[gz + grθ(0)]

?≈µ[grθ(0)]

Instead of µ[gr]
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System falling in a “constant” acceleration field

A system with typical internal radius ri, frequencies ωi, and
accelerations gi, is falling in an external (MOND) acceleration field

of typical size ro, frequencies ωo, and acceleration go

CoM motion, Galaxy effects in the solar system, EFE, z-motions,

Constant external field (simple model keeping only A1):

In space: dgo
dro
= 0 [go

(
dgo
dro

)−1 ≫ ri]

In time: ωo = 0 [ωo ≪ ωi]

“External motion”: µ[go + giθ(ωi/ωo)]⇒ µ[go] θ(∞) = 0

“Internal motions”: µ[gi + goθ(ωo/ωi)]⇒ µ[gi + goθ(0)]

[a0 = 1]
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Center-of-mass motion

“External motion”: µ[go + giθ(ωi/ωo)]

ωo ≪ ωi. [For a constant field (ωo = 0), θ = 0]

gi can be much larger than go

For a finite ωo, if, e.g., θ(x)
x→∞−→ 1/x2 ⇒ δgo/go ∼ µ̂(go)(ri/ro)

All constituents share the same infall acceleration go.
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Galaxy effect on the inner solar system

a0 ∼ go ≪ gi, ωo ≪ ωi

“Internal motions”: µ[gi + goθ(ωo/ωi)] = µ[gi + goθ(0)]

The effect is proportional to 1 − µ(gi/a0 ≫ 1)≪ 1

In AQUAL and QUMOND what appears is µ(go/a0), not µ(x≫ 1)

Other solar-system effects?
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External-field effect

Unlike in AQUAL/QUMOND the µ (or ν) that enters RCs is not
expected to determine the EFE through µ(gex/a0).

Another function altogether (withe the same asymptotes, which
follow from the basic tenets, or at least a different variable lik αgex/a0

ro ≫ ri, go & gi

Sub-tidal: go(ri/ro) ≪ gi ⇒ ωo ≪ ωi (“adiabatic”)

“Internal motions”: µ[gi + goθ(ωo/ωi)] = µ[gi + goθ(0)]

In MG, go enters µ with strength go, here, as θ(0)go > go

θ(x) is decreasing, and θ(1) = 1, so we expect at least θ(0) ∼ a few
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Many open questions

Matters of principle

• Uniqueness given two “initial” conditions

• Non-gravitational forces

• Fusion and fission of bodies

• Causality

Practical

• Difficult to treat many (most) many-body problems.

But also much promise
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