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AS 4022: Cosmology

HS Zhao and K Horne

Online notes:
star-www.st-and.ac.uk/~hz4/cos/cos.html

Handouts in Library
Summary sheet of key results (from John Peacock)

take your own notes (including blackboard lectures)
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Observable Space-Time and Bands
• See What is out there?  In all Energy bands

– Pupil  Galileo’s Lens  8m telescopes  square km arrays
– Radio, Infrared  optical  X-ray, Gamma-Ray (spectrum)

– COBE satellites  Ground   Underground DM detector
• Know How were we created? XYZ & T ?

– Us, CNO in Life, Sun, Milky Way, …  further and further
–  first galaxy  first star  first Helium  first quark
– Now  Billion years ago  first second  quantum origin
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The Visible Cosmos:
a hierarchy of structure and motion

• “Cosmos in a computer”
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Observe A Hierarchical Universe

• Planets
– moving around stars;

• Stars grouped together,
– moving in a slow dance around the center of galaxies.



Page ‹#›

AS 4022 Cosmology  5

• Galaxies themselves
– some 100 billion of them in the observable universe—
– form galaxy clusters bound by gravity as they journey through

the void.

• But the largest structures of all are superclusters,
– each containing thousands of galaxies
– and stretching many hundreds of millions of light years.
– are arranged in filament or sheet-like structures,
– between which are gigantic voids of seemingly empty space.
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• The Milky Way and Andromeda galaxies,
– along with about fifteen or sixteen smaller galaxies,
– form what's known as the Local Group of galaxies.

• The Local Group
– sits near the outer edge of a supercluster, the Virgo cluster.
– the Milky Way and Andromeda are moving toward each other,
– the Local Group is falling into the middle of the Virgo cluster, and

• the entire Virgo cluster itself,
– is speeding toward a mass
– known only as "The Great Attractor."

Cosmic Village
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Introducing Gravity and DM
(Key players)

• These structures and their movements
– can't be explained purely by the expansion of the universe

• must be guided by the gravitational pull of matter.

• Visible matter is not enough

• one more player into our hierarchical scenario:
• dark matter.
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      Cosmologists hope to answer these questions:

• How old is the universe? H0

• Why was it so smooth? P(k), inflation
•
• How did structures emerge from smooth? N-body
• How did galaxies form? Hydro

•   Will the universe expand forever? Omega, Lamda
•   Or will it collapse upon itself like a bubble?
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1st  main concept in cosmology

• Cosmological Redshift
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Stretch of photon wavelength in
expanding space

• Emitted with intrinsic wavelength λ0 from Galaxy A
at time t<tnow in smaller universe R(t) < Rnow

•  Received at Galaxy B now (tnow ) with λ
•  λ / λ0 = Rnow /R(t) = 1+z(t) > 1
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1st main concept: Cosmological Redshift

• The space/universe is expanding,
– Galaxies (pegs on grid points) are receding from each other

• As a photon travels through space, its wavelength
becomes stretched gradually with time.
– Photons wave-packets are like links between grid points

• This redshift is defined by:
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• E.g. Consider a quasar with redshift z=2.  Since the time the
light left the quasar the universe has expanded by a factor of
1+z=3.  At the epoch when the light left the quasar,

– What was the distance between us and Virgo (presently 15Mpc)?
– What was the CMB temperature then (presently 3K)?
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Lec 2
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Cosmic Timeline
• Past  Now
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Trafalgar Square

London Jan 1

Set your watches 0h:0m:0s

Fundamental
observers

H
H
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H
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A comic explanation for cosmic expansion …
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3 mins later

Homogeneous
Isotropic Universe

He

He

)(tRStretchingRadiusEarthElevatingWalking !!
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Four Pillars of Hot Big Bang
• Galaxies moving apart from each other

– Redshift or receding from each other
– Universe was smaller

• Helium production outside stars
– Universe was hot, at least 109K to fuse 4H  He, to overcome a

potential barrier of 1MeV.

• Nearly Uniform Radiation 3K Background (CMB)
– Universe has cooled, hence expanded by at least a factor 109

• Missing mass in galaxies and clusters (Cold Dark
Matter: CDM)

– Cluster potential well is deeper than the potential due to baryons
– CMB temperature fluctuations: photons climbed out of random

potentials of DM

AS 4022 Cosmology  19

2nd Concept: metric of 1+2D universe
• Analogy of a network of

civilization living on an
expanding star (red giant).

– What is fixed (angular
coordinates of the grid points)

– what is changing (distance).
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Analogy: a network on a expanding sphere

.

Angle χ1

Expanding Radius R(t)1

23

4

1

3 2

4 Angle φ1

Fundamental observers 1,2,3,4 with

Fixed angular (co-moving) coordinates (χ,φ)

on expanding spheres their distances are
given by

Metric at cosmic time t ds2 = c2 dt2-dl2,

dl2  = R2(t) (dχ2  +  sin2 χ dφ2)
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3rd Concept: The Energy density of Universe

• The Universe is made up of three things:
– VACUUM
– MATTER
– PHOTONS (radiation fields)

• The total energy density of the universe is made
up of the sum of the energy density of these three
components.

• From t=0 to t=109 years the universe has expanded
by R(t).

radmattervac
t !!!! ++=)(
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Eq. of State for Expansion
 & analogy of baking bread

• Vacuum~air holes in bread

• Matter ~nuts in bread

• Photons ~words painted

• Verify expansion doesn’t
change Nhole, Nproton, Nphoton

– No Change with rest energy of
a proton, changes energy of a
photon

!

▲►
▼◄!!

▲►
▼◄!!
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• VACUUM ENERGY:

• MATTER:

• RADIATION:number of photons Nph = constant
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• The total energy density is given by:

phmattervac !!!! ++"
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Key Points
• Scaling Relation among

– Redshift: z,
– expansion factor: R

– Distance between galaxies
– Temperature of CMB: T

– Wavelength of CMB photons: lambda
• Metric of an expanding 2D+time universe

– Fundamental observers
– Galaxies on grid points with fixed angular coordinates

• Energy density in
– vacuum, matter, photon
– How they evolve with R or z

• If confused, recall the analogies of
– balloon, bread, a network on red giant star, microwave oven
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Topics
Theoretical and Observational

• Universe of uniform density
– Metrics ds, Scale R(t) and Redshift
– EoS for mix of vacuum, photon,

matter

• Thermal history
– Nucleosynthesis
– He/D/H

• Structure formation
– Growth of linear perturbation
– Origin of perturbations
– Relation to CMB

Hongsheng.Zhao (hz4)

• Quest of H0 (obs.)
– Applications of expansion models
– Distances Ladders

– (GL, SZ)

• Quest for Omega (obs.)
– Galaxy/SNe surveys
– Luminosity/Correlation Functions

• Cosmic Background
– COBE/MAP/PLANCK etc.
– Parameters of cosmos

Keith D. Horne (kdh1)
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Lec 3
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 Acronyms in Cosmology
• Cosmic Background Radiation (CBR)

– Or CMB (microwave because of present temperature 3K)
– Argue about 105 photons fit in a 10cmx10cmx10cm

microwave oven.  [Hint: 3kT = h c / λ  ]

• CDM/WIMPs: Cold Dark Matter, weakly-interact
massive particles

– At time DM decoupled from photons, T ~ 1014K,  kT ~ 0.1 mc^2
– Argue that dark particles were

– non-relativistic (v/c << 1), hence “cold”.
– Massive  (m >> mproton =1 GeV)
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Brief History of Universe
• Inflation

– Quantum fluctuations of a tiny region
– Expanded exponentially

• Radiation cools with expansion T ~ 1/R ~t-2/n

– He and D are produced (lower energy than H)
– Ionized H turns neutral (recombination)
– Photon decouple (path no longer scattered by electrons)

• Dark Matter Era
– Slight overdensity in Matter can collapse/cool.
– Neutral transparent gas

• Lighthouses (Galaxies and Quasars) form
– UV photons re-ionize H
– Larger Scale (Clusters of galaxies) form
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Acronyms and Physics Behind
• DL: Distance Ladder

– Estimate the distance of a galaxy of size 1 kpc and angular size
1 arcsec?  [About  0.6 109 light years]

• GL: Gravitational Lensing
– Show that a light ray grazing a spherical galaxy of 1010 Msun at

typical b=1 kpc scale will be bent ~4GM/bc2 radian ~1 arcsec
– It is a distance ladder

• SZ: Sunyaev-Zeldovich effect
– A cloud of 1kev thermal electrons scattering a 3K microwave

photon generally boost the latter’s energy by 1kev/500kev=0.2%
– This skews the blackbody CMB, moving low-energy photons to

high-energy; effect is proportional to electron column density.
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• the energy density of universe now consists
roughly

– Equal amount of vacuum and matter,
– 1/10 of the matter is ordinary protons, rest in dark matter

particles of 10Gev
– Argue dark-particle-to-proton ratio ~ 1

– Photons (3K ~10-4ev) make up only 10-4 part of total energy
density of universe (which is ~ proton rest mass energy density)

– Argue photon-to-proton ratio ~ 10-4  GeV/(10-4ev)    ~ 109
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What have we learned?
• Concepts of Thermal history of universe

– Decoupling
– Last scattering
– Dark Matter era
– Compton scattering
– Gravitational lensing
– Distance Ladder

• Photon-to-baryon ratio >>1

• If confused, recall the analogy of
– Crystalization from comic soup,
– Last scattering photons escape from the photosphere of the sun
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The rate of expansion of Universe
• Consider a sphere of radius r=R(t)
χ,

• If energy density inside is ρ c2

 Total effective mass inside is
      M = 4 πρ r3 /3

• Consider a test mass m on this
expanding sphere,

• For Test mass its
     Kin.Energy + Pot.E. = const E
 m (dr/dt)2/2 – G m M/r = cst
(dR/dt)2/2  - 4 πG ρ R2/3 = cst

cst>0, cst=0, cst<0

(dR/dt)2/2  = 4 πG (ρ + ρcur) R2/3
where cst is absorbed by ρcur ~ R(-2)
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Typical solutions of expansion rate
   H2=(dR/dt)2/R2=8πG (ρcur+ ρm + ρr + ρv )/3
Assume domination by a component ρ ~ R-n

• Argue also H = (2/n) t-1 ~ t-1.   Important thing is scaling!
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Lec 4 Feb 22
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Where are we heading?

Next few lectures will cover a few chapters of
– Malcolm S. Longair’s “Galaxy Formation” [Library Short Loan]

• Chpt 1: Introduction
• Chpt 2: Metrics, Energy density and Expansion
• Chpt 9-10: Thermal History
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Thermal Schedule of Universe [chpt 9-10]
• At very early times, photons are typically energetic enough that they

interact strongly with matter so the whole universe sits at a temperature
dictated by the radiation.

• The energy state of matter changes as a function of its temperature and so
a number of key events in the history of the universe happen according to a
schedule dictated by the temperature-time relation.

• Crudely  (1+z)~1/R ~ (T/3) ~109 (t/100s)(-2/n) ~ 1000 (t/0.3Myr)-2/n,  H~1/t
• n~4 during radiation domination

 1012     109      106     103        1            1+z

T(K)

1010

103

Neutrinos
decouple

Recombination

After this Barrier photons
free-stream in universe

Radiation        Matter

spp
6

10~
!

see 1~
+!

He D ~100s

0.3Myr
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A summary: Evolution of Number Densities
of γ, P, e, υ
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kT~0.1mp c2

Electrons freeze-out
at kT~0.1me c2

All particles
relativistic

Neutrinos decouple
while relativistic
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A busy schedule for the universe
• Universe crystalizes with a sophisticated schedule,

much more confusing than simple expansion!
– Because of many bosonic/fermionic players changing balance
– Various phase transitions, numbers NOT conserved unless the

chain of reaction is broken!
– p + p-   <-> γ + γ   (baryongenesis)
– e + e+   <-> γ + γ,   v + e <-> v + e (neutrino decouple)
– n  < p + e- + v,   p + n < D +  γ  (BBN)
– H+ + e-  < H  + γ ,    γ + e <-> γ + e   (recombination)

• Here we will try to single out some rules of thumb.
– We will caution where the formulae are not valid, exceptions.
– You are not required to reproduce many details, but might be

asked for general ideas.
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What is meant Particle-Freeze-Out?
• Freeze-out of equilibrium means NO LONGER in

thermal equilibrium, means insulation.
• Freeze-out temperature means a species of

particles have the SAME TEMPERATURE as
radiation up to this point, then they bifurcate.

• Decouple = switch off = the chain is broken =
Freeze-out
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A general history of a massive particle

• Initially mass doesn’t matter in hot
universe

• relativistic, dense (comparable to photon
number density  ~ T3 ~ R-3),
– frequent collisions with other species to be in thermal

equilibrium and cools with photon bath.
– Photon numbers (approximately) conserved, so is the

number of relativistic massive particles
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energy distribution in the photon bath
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Initially zero chemical potential (~ Chain is on, equilibrium with
photon)

• The number density of photon or massive particles is :

• Where we count the number of particles occupied in
momentum space and g is the degeneracy factor.
Assuming zero cost to annihilate/decay/recreate.
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• As  kT cools, particles go from
• From  Ultrarelativistic limit.  (kT>>mc2)
      particles behave as if they were massless

• To  Non relativistic limit ( θ=mc2/kT > 10 , i.e., kT<< 0.1mc2)
Here we can neglect the ±1 in the occupancy number
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When does freeze-out happen?
• Happens when KT cools 10-20 times below mc2,

run out of photons to create the particles

– Non-relativisitic decoupling

• Except for neutrinos
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particles of energy Ec=hvc unbound by
high energy tail of photon bath

dN

dh!

c
KT�

cIf run short of hard photon to unbind  => "Freeze-out" => KT
25

chv
�

9
10

!

# hardest photons

~ #  baryons

hv
25c chv KT=
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Rule 1. Competition of two processes
• Interactions keeps equilibrium:

– E.g., a particle A might undergo the annihilation reaction:

• depends on cross-section σ and speed v. & most importantly
– the number density n of photons ( falls as  t(-6/n) , Why?  Hint R~t(-2/n) )

• What insulates: the increasing gap of space between
particles due to Hubble expansion H~ t-1.

• Question: which process dominates at small time?  Which
process falls slower?

!! +"+ AA

AS 4022 Cosmology  48

• Rule 2. Survive of the weakest

• While in equilibrium, nA/nph ~ exp(−θ).  (Heavier is rarer)
• When the reverse reaction rate σAυ is slower than Hubble

expansion rate  H(z) , the abundance ratio is frozen NA/Nph~1/(σAυ) /Tfreeze

• Question: why frozen while nA
 , nph both drop as T3 ~ R-3.

• ρ A ~ nph/(σAυ) ,  if  m ~ Tfreeze

ph

A

N

N

kT

mc
2

Freeze out

σAυ LOW (v) smallest
interaction, early freeze-out
while relativistic

σAυ HIGH later freeze-out
at lower T
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Effects of freeze-out
• Number of particles change (reduce) in this phase

transition,
– (photons increase slightly)

• Transparent to photons or neutrinos or some other
particles

• This defines a “last scattering surface” where
optical depth to future drops below unity.
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Number density of
non-relativistic particles to

relativistic photons

• Reduction factor ~ exp(- θ), θ=mc2/kT, which drop
sharply with cooler temperature.

• Non-relativistic particles (relic) become *much
rarer* by exp(-θ) as universe cools below mc2/θ,

     θ ∼10−25.
– So rare that infrequent collisions can no longer maintain

coupled-equilibrium.
– So Decouple = switch off = the chain is broken = Freeze-out
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After freeze-out
• Particle numbers become conserved again.
• Simple expansion.

– number density falls with expanding volume of universe, but
Ratio to photons kept constant.
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Small Collision cross-section

• Decouple non-relativisticly once kT<mc2 .  Number
density ratio to photon drops steeply with cooling
exp(- mc2/kT).
– wimps (Cold DM) etc. decouple (stop creating/annihilating)

while non-relativistic. Abundance of CDM  Ω ~ 1/ σAυ

• Tc~109K   NUCLEOSYNTHESIS (100s)

• Tc~5000K RECOMBINATION (0.3 Myrs) (z=1000)
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For example,
• Antiprotons freeze-out t=(1000)-6 sec,
• Why earlier than positrons freeze-out t=1sec ?

– Hint: anti-proton is ~1000 times heavier than positron.
– Hence factor of 1000 hotter in freeze-out temperature

• Proton density falls as R-3
 now, conserving

numbers
• Why it falls exponentially exp(-θ) earlier on

– where θ = mc2/kT ~ R.
– Hint: their numbers were in chemical equilibrium, but not

conserved earlier on.
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SKIP SKIP SKIP
why fewer neutrons in universe than protons

• Before 1 s, lots of neutrinos and electrons keep the abundance of
protons and neutrons about equal through
– n + υ  p + e-

• After 1 s free-moving neutrons (which is slightly more
massive than protons) start to decay with half life ~ 10.3 min
compared to proton ~ 1032 yr.
– n   p + e- + υ

• Some are locked into D.
--  p+n -> D + photon
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smallest Collision cross-section

• neutrinos (Hot DM) decouple from electrons (due
to very weak interaction) while still hot (relativistic
0.5 Mev ~ kT >mc2 ~ 0.02-2 eV)

•

• Presently there are 3 x 113 neutrinos and 452 CMB
photons per cm3 .  Details depend on
– Neutrinos have 3 species of spin-1/2 fermions while photons are

1 species of spin-1 bosons
– Neutrinos are a wee bit colder, 1.95K vs. 2.7K for photons

[during freeze-out of electron-positions, more photons created]
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Counting neutrinos
– There are at least 3 species of neutrinos: electron, muon, tau,

perhaps more (called sterile neutrinos).  Their masses are
slightly different, all very light, they mix and oscillate,
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• At early times energy density of photons are high enough
to produce particle pairs

– the number density of photons was so high, and typical photons
were so energetic

– PHOTON+PHOTONPARTICLE +ANTI-PARTICLE

• The kinds of particles and anti-particles that are created
depends on photon energy spectrum

– Particularly, depends on the average energy per photon, which
depends on the temperature.

– If the photon energy is less than mpc2 then mp can’t be created;
– as universe cools, more massive particles ceased to be created,

while less massive particles were still allowed to be created.
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NEUTRINO DECOUPLE as Hot DM

• Neutrinos are kept in thermal equilibrium by scattering (weak
interaction):

• This interaction freezes out when the temperature drops to kTυ
~MeV~ rest mass electrons

– Because very few electron-positions left afterwards (they become photons)
– Neutrinos Move without scattering by electrons after 1 sec.

• Argue that Neutrinos have Relativistic speeds while freezing out
– kTυ >> rest mass of neutrinos(~eV)
– They are called Hot Dark Matter (HDM)

e e! !
" "

+ # +
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SKIP SKIP SKIP
 A worked-out exercise

ph
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3-n/2 3-n/2

2

Show at last scattering surface Optical depth = n (z)

(1+z)
~ (1+z)

~ (1+z) ~ ~ 1 .

where n=4 for radiation era.

 

Given that Freeze-out fraction ~ exp(
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Evolution of Sound Speed

Expand a box of fluid
( )t!
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( )P t
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/ vol
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Radiation Matter

( )Where fluid density   t r m! ! !=

( )
2

Fluid pressure  t
3 r

c
= !" m

mKT
!

"
µ

Matter number 
density

Random motion energy
Non-Relativistic

IDEAL GAS4

rNote       R
!" #

3

m R
!" # 21

Neglect mKT c<<
µ

Coupled radiation-baryon
relativistic fluid

 Show C2
s = c2/3 /(1+Q) , Q = (3 ρm) /(4 ρr) ,  Cs drops

– from c/sqrt(3) at radiation-dominated era
– to c/sqrt(5.25) at matter-radiation equality
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Coupled Photon-Baryon Fluid

  Keep electrons hot Te ~ Tr until redshift z
1 + z

 Tr  1500  
500

! "
# $ %
& '
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KTe
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Temperature and Sound Speed of
Decoupled Baryonic Gas

Until reionization z ~ 10 by stars quasars

R

Tγ
Te

After decoupling (z<500),
Cs ~ 6 (1+z) m/s because

dP

dX

d
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What have we learned?

Where are we heading?

• Sound speed of gas before/after decoupling

Topics Next:

• Growth of [chpt 11 bankruptcy of uniform universe]
– Density Perturbations (how galaxies form)
– peculiar velocity (how galaxies move and merge)

• CMB fluctuations (temperature variation in CMB)
• Inflation (origin of perturbations)
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Peculiar Motion

• The motion of a galaxy has two parts:

[ ]

)()().(

)()(

ttRtR

ttR
dt

d
v
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&&

v

+=

=
Proper length vector

Uniform
expansion vo Peculiar motion δv
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Damping of peculiar motion
(in the absence of overdensity)

•
• Generally peculiar velocity  drops with expansion.

• Similar to the drop of (non-relativistic) sound speed with
expansion

2 *( ) constant~"Angular Momentum"R R R! != =& &

R(t)

constant
)( ==
c
xtRv &!
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Non-linear Collapse of an Overdense Sphere

• An overdense sphere is a very useful non linear model as it
behaves in exactly the same way as a closed sub-universe.

• The density perturbations need not be a uniform sphere: any
spherically symmetric perturbation will clearly evolve at a
given radius in the same way as a uniform sphere containing
the same amount of mass.

b
! "!+

b
!
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R,
R1

t

Rmax

Rmax/2
virialize

logρ

logt

t-2

Background
density changes
this way

2

1

6
b

Gt
!

"
=

AS 4022 Cosmology  70

Gradual Growth of perturbation

2 42

2 3

(mainly radiation )3 1

8 (mainly matter )

Perturbations Grow!

R Rc

G R R R
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! # ! !

$

$

% &'
( = & )
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Verify δ changes by a factor of 10 between z=10 and z=100? And a
factor of 100 between z=105  and z=106?
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Equations governing Fluid Motion
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4 (Poissons Equation)

1 d ln
. (Mass Conservation)

dt

dv
ln (Equation of motion)

dt
s

G

d
v

dt

c

! " #

# #

#

! #

$ =

= = %$

= %$ % $

v v

urv

!
!

"="
# 2

since
s
cP

P

AS 4022 Cosmology  72

Decompose into unperturbed + perturbed
• Let

• We define the Fractional Density Perturbation:

( ) exp( ),
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• Motion driven by gravity:
    due to an overdensity:

• Gravity and overdensity by Poisson’s equation:

• Continuity equation:

Peculiar motion δv and peculiar gravity g1 both scale with δ and are
in the same direction.

),()( 1 tgtg
o

!
vv

+

( ) (1 ( , ))
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t t! ! " #= +

1
4 og G! " #$% • =
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v t
dt

! ! "#$ • =
v v The over density will

rise if there is an
inflow of matter
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THE equation for structure formation

• In matter domination

• Equation becomes
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• Each eq. is similar to a forced spring
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e.g., Nearly Empty Pressure-less
Universe

2

2

0

~ 0

2 1
0, ( )

constant

 no growth 

R
H R t

t t t R t

t

!

" "

"

# #
+ = = = $

# #

$ =

%

&



Page ‹#›

AS 4022 Cosmology  77

What have we learned?
Where are we heading?

• OverDensity grows as
– R (matter) or R2  (radiation)

• Peculiar velocity points towards overdensities

• Topics Next: Jeans instability
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The Jeans Instability

• Case 1- no expansion
-  the density contrast δ has a wave-like form

for the harmonic oscillator equation

where we have the dispersion relation
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• At the (proper) JEANS LENGTH scale we switch from
– Oscillations for shorter wavelength modes to
– the exponential growth of perturbations for longer wavelength

• λ<λJ, ω2>0  oscillation of the perturbation.

• λ≥λJ, ω2≤0exponential growth/decay

,   where timescale 
J s
c

G

!
" # #

$
= =

( ) 2whereexp !" #=$$±% t
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Jeans Length in background of
constant or falling density

• Background of Constant density :
– Application: Collapse of clouds, star formation.
– Timescale:

• Background of Falling density
– Expanding universe   G ρ ~ t-2,
– Instantaneous Jeans length ~ cst

1

2( / )

~ dynamical collapse time 

for region of uniform density .

G! " #

"

$
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Jeans Instability
• Case 2: on very large scale λ>>λJ = cs t of an Expanding

universe
– Neglect Pressure (restoring force) term
– Grow as delta ~ R ~ t2/3 for long wavelength mode if  Omega_m=1

universe.
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E.g.,

• Einstein de Sitter Universe

• Generally

logδ

Log R/R0

ΩM=1
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3

2
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Verify  Growth Solution 
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Case III: Relativistic (photon) Fluid

• equation governing the growth of perturbations being:

• Oscillation solution happens on small scale 2π/k = λ<λJ

• On larger scale, growth as
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SKIP SKIP SKIP  Jeans Mass Depends on the
Species of the Fluid that dominates

• If Photon dominates:

• If Dark Matter dominates & decoupled from photon:
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• SKIP SKIP SKIP Jeans Mass past and now

J
M

!M
16

10

!M
5

10

!M

Early

zNow )1(1010 36
+

Flattens out at time
of equality.

Galaxy can form
afterwards

1Note: (1 )R z
!

" +
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SKIp SKIp SKIP: Dark Matter Overdensity
Growth Condition

•  GROW [~Collapse] only if
– During matter-domination (t > teq)  [chpt 11.4] or
– during radiation domination, but on proper length scales larger

than
– sound horizon (λ > cs t)  [chtp12.1] &
– free-streaming length of relativistic dark matter (λ > c tfs )

[chpt 13.3]
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Lec 8

• What have we learned: [chpt 11.4]
– Conditions of gravitational collapse (=growth)
– Stable oscillation (no collapse) within sound horizon if

pressure-dominated

• Where are we heading:
– Cosmic Microwave Background [chpt 15.4]

– As an application of Jeans instability
– Inflation in the Early Universe [chpt 20.3]
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Theory of CMB Fluctuations

• Linear theory of structure growth predicts that the
perturbations:

will follow a set of coupled Harmonic Oscillator equations.
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• The solution of the Harmonic Oscillator [within
sound horizon] is:

• Amplitude is sinusoidal function of  k cs t
– if k=constant and oscillate with t
– or t=constant and oscillate with k.

321 sincos)( AtkcAtkcAt
ss
++=!
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• Where ψ is the perturbation in the gravitational potential,
with      SKIp SKIp SKIP
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• We don’t observe the baryon overdensity       directly
• -- what we actually observe is temperature fluctuations.

• The driving force is due to dark matter over densities.
• The observed temperature is:
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• The observed temperature also depends on how
fast the Baryon Fluid is moving.
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Inflation in Early Universe [chtp 20.3]

• Problems with normal expansion theory (n=2,3,4):
– What is the state of the universe at t0?                           Pure E&M field

(radiation) or exotic scalar field?
– Why is the initial universe so precisely flat?
– What makes the universe homogeneous/similar in opposite directions

of horizon?

• Solutions: Inflation, i.e., n=0 or n<2
– Maybe the horizon can be pushed to infinity?
– Maybe there is no horizon?
– Maybe everything was in Causal contact at early times?

Consider universe goes through a phase with

( ) ~ ( )

( ) ~  q=2/n  

n

q

t R t

R t t where

! "
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x        sun     x
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Horizon
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~ ~ 0 at 0
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z R
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Why are these two
galaxies so similar without
communicating yet?

Why is the curvature
term so  small (universe
so flat) at early universe
if radiation dominates
n=4 >2?
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What have we learned?
• What determines the patterns of CMB at last

scattering
– Analogy as patterns of fine sands on a drum at last hit.

• The need for inflation to
– Bring different regions in contact
– Create a flat universe naturally.
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Inflationary Physics

• Involve quantum theory to z~1032 and perhaps a scalar field
φ(x,t) with energy density

2

-n1
2

( ) ~ R(t) , where n<<1

fluctuate between neighbouring points [A,B]

while *slowly* rolling down to ground state
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• S
• A slightly different finishing time (Quantum Effect) of

inflation at different positions leads to slight perturbations to
curvatures, which seed structure formation.

• Speculative at best.

ρφ

                                   t

Point A

Point B
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Inflation broadens Horizon
• Light signal travelling with speed c on an

expanding sphere R(t), e.g., a fake  universe
R(t)=1lightyr ( t/1yr )q

– Emitted from time ti

– By time t=1yr will spread across (co-moving coordinate) angle xc

i i

1 1 1 1
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t t

1

Horizon in co-moving coordinates

(1 )cdt cdt
 =  
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1
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 can be very large for very small t  if q=2/n>1 

(e.g., t 0.01, 2, 99 ,  Inflation allows we see everywhere)
c

q x #= = = >>

AS 4022 Cosmology  99

Inflation dilutes the effect of
initial curvature of universe

2

i

i

( )( )
~ 0 (for n<2) sometime after R>>R  

( ) ( )
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even if initially the universe is curvature-dominated 1
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E.g.
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f=10 sec to t =1sec with n=1, 

and then expand normally with n=4 to t=1 year, 

SHOW at this time the universe is far from curvature-dominated.  
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Exotic Pressure drives Inflation
2 3
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What Have we learned?
• How to calculate Horizon.
• The basic concepts and merits of inflation

• Pressure of various kinds (radiation, vacuum,
matter)
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Expectations for my part of the Exam
• Remember basic concepts (or analogies)

– See list

• Can apply various scaling relations to do *some* of
the short questions at the lectures.

– See list

• *Relax*.
– thermal history and structure formation are advanced subjects

with lots of details.  Don’t worry about details and equations,
just be able to recite the big picture.

• *If you like*, you can read reference texts to have
deeper understanding of the lectured material.

– Only material on this Final Notes is examinable.

AS 4022 Cosmology  103

Why Analogies in Cosmology
• Help you memorizing

– Cosmology calls for knowledge of many areas of physics.
– Analogies help to you memorize how things move and change in

a mind-boggling expanding 4D metric.

• *Help you reason*, avoid “more equations, more
confusions”.

– During the exam, You might be unsure about equations and
physics,

– the analogies *help you reason* and *recall* the right
scaling relations, and get the big picture right.

• *Months after the exam*,
– Analogies go a long way
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List of keys
• Scaling relations among

– Redshift z, wavelength, temperature, cosmic time, energy density,
number density, sound speed

– Definition formulae for pressure, sound speed, horizon
– Metrics in simple 2D universe.

• Describe in words the concepts of
– Fundamental observers
– thermal decoupling

– Common temperature before,
– Fixed number to photon ratio after
– Hot and Cold DM.

– gravitational growth.
– Over-density,
– direction of peculiar motion driven by over-density, but damped by

expansion
– pressure support vs. grav. collapse

•Enjoy Prof. Horne’s Lectures
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Tutorial
• Consider a micro-cosmos of N-ants inhabiting an

expanding sphere of radius R=R0 (t/t0)q ,  where
presently we are at t=t0 =1year, R=R0 =1m.   Let
q=1/2, N=100, and the ants has a cross-length
σ=1cm for collision.   Let each ant keep its random
angular momentum per unit mass J=1m*1(m/yr)
with respect to the centre of the sphere.

– What is the present rate of expansion dR/dt/R = in units of 1/yr,
– How does the ant random speed, ant surface density, change as

function of cosmic time?
– Light emitted by ant-B travels a half circle and reaches ant-A

now, what redshift was the light emitted?
– What is the probability that the ant-A would encounter another

ant from time t1 to time t2.    How long has it travelled?  Calculate
assume t1 =1/2 yr, t2 =2yr.
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E.g.
• As in previous universe but with n=3, Argue that

the horizon of a non-relativistic moving ant at time
t=1yr is also finite.

• Assuming the ant moves with 1cm/sec now, but
was faster earlier on, estimate the age of universe
when it was moving relativistically?  Estimate how
much it has moved from time zero to t=1 yr.  What
fraction of the length was in the relativistic phase?
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• Show the age of the universe is t=1sec at z~1010;
assume crudely that at matter-radiation equality
z=103 and age t =106 yr

– Argue that a void in universe now originates from an under-
dense perturbation at z=1010 with δ about 10-17.

– The edge of the void are lined up by galaxies.  What direction is
their peculiar gravity and peculiar motion?

• A patch of sky is presently hotter in CMB by 3
micro Kelvin than average.  How much was it
hotter than average at the last scattering (z=1000)?


