
Energetic Tail of Photon Bath
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Evolution of Sound Speed

Expand a box of fluid
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Radiation Matter
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– from c/sqrt(3) at radiation-dominated era
– to c/sqrt(5.25) at matter-radiation equality
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• Growth of Density Perturbations and
peculiar velocity



Peculiar Motion

• The motion of a galaxy has two parts:
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Damping of peculiar motion
(in the absence of overdensity)

•

• Generally peculiar velocity  drops with expansion.
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Non-linear Collapse of an Overdense Sphere
• An overdense sphere is a very useful non linear

model as it behaves in exactly the same way as a
closed sub-universe.

• The density perturbations need not be a uniform
sphere: any spherically symmetric perturbation
will clearly evolve at a given radius in the same
way as a uniform sphere containing the same
amount of mass.
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Gradual Growth of perturbation
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Equations governing Fluid Motion
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• Let

• We define the Fractional Density Perturbation:
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• Motion driven by gravity:
    due to an overdensity:
• Gravity and overdensity by Poissons equation:

• Continuity equation:

Peculiar motion and peculiar gravity both scale
with d and are in the same direction.
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the equation for linear growth
• At high z>>1
& matter domination

• In the equation
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Nearly Empty Pressure-less
Universe

2

2

0

~ 0

2 10, ( )

constant
 no growth 

M

RH R t
t t t R t

t

δ δ

δ

Ω

∂ ∂
+ = = = ∝

∂ ∂
∝ =

→

��



The Jeans Instability

• Case 1- no expansion
– Assume the density contrast δ has a wave-like form

– Assume no expansion

–  the dispersion relation
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• At the (proper) JEANS LENGTH scale we switch
from
– standing sound waves for shorter wavelengths to
– the exponential growth of perturbations for long

wavelength modes

• λ<λJ, ω2>0  oscillation of the perturbation.
• λ≥λJ, ω2≤0 exponential growth/decay

ρ
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• Timescale:

• Application: Collapse of clouds, star formation.
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Jeans Instability
• Case 2: on very large scale λ>>λJ of  Expanding

universe
– Neglect Pressure (restoring force) term
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• Einstein de Sitter

• Generallylogδ
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Case III: Relativistic Fluid

• equation governing the growth of perturbations
being:
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Jeans Mass Depends on the Species of the
Fluid that dominates

• If Photon dominates:

• If DarkMatt dominates & decoupled from photon:
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• Jeans Mass past and now
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Dark Matter Overdensity Growth Condition

•  GROW Possible only if
– During matter-domination (t > teq)  or
– during radiation domination, but on proper

length scales larger than
• sound horizon (λ > cs t) &
• free-streaming length of relativistic dark matter (λ >

c tfs )



Theory of CMB Fluctuations
• Linear theory of structure growth predicts that the

perturbations:

  will follow the following coupled equations.
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• Where ψ is the perturbation in the gravitational
potential, with
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• This is similar to a spring with a restoring force:

• Frestoring=-mω2x
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• The solution of the Harmonic Oscillator
equation is:

• Amplitude is sinusoidal function of  k cs t
– if k=constant and oscillate with t
– or t=constant and oscillate with k.
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• We don’t observe       directly-what we actually
observe is temperature fluctuations.

• The driving force is due to dark matter over
densities.

• The observed temperature is:
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• The observed temperature also depends on
how fast the Baryon Fluid is moving.

dt
dv Bδ−=∇   FieldVelocity 

c
v

cT
T B

obs

±+=⎟
⎠
⎞

⎜
⎝
⎛ ∆

23
ψδ Doppler Term


	Energetic Tail of Photon Bath
	Evolution of Sound Speed
	
	
	Peculiar Motion
	Damping of peculiar motion (in the absence of overdensity)
	Non-linear Collapse of an Overdense Sphere
	
	Gradual Growth of perturbation
	Equations governing Fluid Motion
	
	the equation for linear growth
	Nearly Empty Pressure-less Universe
	The Jeans Instability
	
	
	Jeans Instability
	
	Case III: Relativistic Fluid
	Jeans Mass Depends on the Species of the Fluid that dominates
	Dark Matter Overdensity Growth Condition
	Theory of CMB Fluctuations

