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Gravitational Dynamics:
An Introduction

HongSheng Zhao
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C1.1.1 Our Galaxy and Neighbours

• How structure in universe form/evolve?
• Galaxy Dynamics Link together early universe & future.
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Our Neighbours

• M31 (now at 500 kpc) separated from MW
a Hubble time ago

• Large Magellanic Cloud has circulated our
Galaxy for about 5 times at 50 kpc
– argue both neighbours move with a typical

100-200km/s velocity relative to us.
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Outer Satellites on weak-g orbits
around Milky Way

~  50 globulars on weak-g    (R<150 kpc)
~100 globulars on strong-g   (R< 10 kpc)

R>10kpc: Magellanic/Sgr/Canis streams
R>50kpc: Draco/Ursa/Sextans/Fornax…
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C1.1.2 Milky Way as Gravity Lab

• Sun has circulated the galaxy for 30 times
– velocity vector changes direction +/- 200km/s

twice each circle ( R = 8 kpc )
–– ArgueArgue that the MW is a nano-earth-gravity Lab
– Argue that the gravity due to 1010 stars only

within 8 kpc is barely enough.  Might need to
add Dark Matter.
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Sun escapes unless our Galaxy has
Dark Matter
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C1.1.3  Dynamics as a tool

• Infer additional/dark matter
– E.g., Weakly Interacting Massive Particles

• proton mass, but much less interactive
• Suggested by Super-Symmetry, but undetected

– A $billion$ industry to find them.
• What if they don’t exist?
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…

• Test the law of gravity:
– valid in nano-gravity regime?
– Uncertain outside solar system:

• GM/r2  or cst/r ?
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Outer solar system

• The Pioneer experiences an anomalous
non-Keplerian acceleration of 10-8 cm s-2

• What is the expected acceleration at 10 AU?
• What could cause the anomaly?
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Gravitational Dynamics can be applied to:

• Two body systems:binary stars
• Planetary Systems, Solar system
• Stellar Clusters:open & globular
• Galactic Structure:nuclei/bulge/disk/halo
• Clusters of Galaxies
• The universe:large scale structure
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Topics
• Phase Space Fluid f(x,v)

– Eqn of motion
– Poisson’s equation

•  Stellar Orbits
– Integrals of motion (E,J)
– Jeans Theorem

• Spherical Equilibrium
– Virial Theorem
– Jeans Equation

• Interacting Systems
– TidesSatellitesStreams
– Relaxationcollisions

• MOND
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C2.1 How to model motions of
1010stars in a galaxy?

• Direct N-body approach (as in simulations)
– At time t particles have (mi,xi,yi,zi,vxi,vyi,vzi),

i=1,2,...,N (feasible for N<<106 ).
• Statistical or fluid approach (N very large)

– At time t particles have a spatial density
distribution n(x,y,z)*m, e.g., uniform,

– at each point have a velocity distribution
G(vx,vy,vz), e.g., a 3D Gaussian.
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C2.2 N-body Potential and Force

• In N-body system with mass m1…mN,
the gravitational acceleration g(r) and
potential φ(r) at position r is given by:
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Example: Force field of two-body
system in Cartesian coordinates
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C2.3 A fluid element: Potential &
Gravity

• For large N or a continuous fluid, the gravity dg and
potential dφ due to a small mass element dM is calculated
by replacing mi with dM:
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Lec 2 (Friday, 10 Feb):
Why Potential φ(r) ?

• Potential per unit mass φ(r) is scalar,
– function of r only,
– Related to but easier to work with than force

(vector, 3 components)
– Simply relates to orbital energy E= φ(r) + ½ v2
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C2.4 Poisson’s Equation
• PE relates the potential to the density of matter

generating the potential by:

• [BT2.1]
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C2.5 Eq. of Motion in N-body

• Newton’s law: a point mass m at position r
moving with a velocity dr/dt with Potential
energy Φ(r) =mφ(r) experiences a Force
F=mg , accelerates with following Eq. of
Motion:
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Example 1: trajectories when G=0

• Solve Poisson’s Eq. with G=0 
– F=0,  Φ(r)=cst, 

• Solve EoM for particle i initially at (Xi,0, V0,i)
– dVi/dt = Fi/mi = 0          Vi = cst = V0,i
– dXi/dt = Vi  = Vi,0          Xi(t) =  Vi,0  t  + Xi,0,
– where X, V are vectors,
– straight line trajectories

• E.g., photons in universe go straight
– occasionally deflected by electrons,
– Or bent by gravitational lenses
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What have we learned?

• Implications on gravity law and DM.
• Poisson’s eq. and how to calculate gravity
• Equation of motion
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How N-body system evolves

• Start with initial positions and velocities of all N
particles.

• Calculate the mutual gravity on each particle
– Update velocity of each particle for a small time step dt

with EoM
– Update position of each particle for a small time step dt

• Repeat previous for next time step.
•  N-body system fully described
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C2.6 Phase Space of Galactic Skiers
• Nskiers identical particles moving in a small bundle

in phase space (Vol =Δx Δ v),
• phase space deforms but maintains its area.

• Gap widens between faster & slower skiers
– but the phase volume & No. of skiers are constants.

 +x front

 vx

x

+Vx Fast
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“Liouvilles Theorem on the piste”

• Phase space density of a group of skiers is const.
  f  = m  Nskiers / Δx Δvx = const
Where m is mass of each skier,

[ BT4.1]
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C2.7 density of phase space fluid:
Analogy with air molecules

• air with uniform density n=1023 cm-3

   Gaussian velocity rms velocity σ =0.3km/s
in x,y,z directions:

• Estimate f(0,0,0,0,0,0) in pc-3 (km/s)-3
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Lec 3 (Valentine Tuesday)
C2.8 Phase Space Distribution Function (DF)

PHASE SPACE DENSITY: No. of sun-like
stars per unit volume per velocity volume
f(x,v)

sun sun

3 3

sun

3 1 3

m number of suns m
f(x,v)

space volume velocity volume

1 m
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C2.9 add up stars: integrate over
phase space

• star mass density: integrate velocity volume

• The total mass : integrate over phase space

xdvdvxfxdxMtotal
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• define spatial density of stars n(x)

• and the mean stellar velocity v(x)

• E.g., Conservation of flux (without proof)
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C3.0 Star clusters differ from air:

• Stars collide far less frequently
– size of stars<<distance between them
– Velocity distribution not isotropic

• Inhomogeneous density ρ(r) in a Grav.
Potential φ(r)
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Example 2: A 4-body problem

• Four point masses with G m = 1 at rest    (x,y,z)=(0,1,0),(0,-1,0),(-
1,0,0),(1,0,0).  Show the initial total energy

        Einit = 4 * ( ½ + 2-1/2 + 2-1/2) /2  = 3.8

• Integrate EoM by brutal force for one time step =1 to find the
positions/velocities at time t=1.
– Use V=V0 + g t = g  = (u, u, 0) ;  u = 21/2/4 + 21/2/4 + ¼   =  0.95
– Use x= x0 + V0 t = x0 = (0, 1, 0).

• How much does the new total energy differ from initial?
   E - Einit  =  ½ (u2 +u2) * 4 =  2 u2  = 1.8

AS4021 Gravitational Dynamics 30

Often-made Mistakes

• Specific energy or specific force confused with the
usual energy or force

• Double-counting potential energy between any
pair of mass elements, kinetic energy with v2

• Velocity vector V confused with speed,
• 1/|r| confused with 1/|x|+1/|y|+1/|z|
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What have we learned?

Potential to Gravity

Potential to density

Density to potential

Motion to gravity
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Concepts

• Phase space density
–  incompressible
– Dimension Mass/[ Length3 Velocity3 ]

– Show a pair of non-relativistic Fermionic
particle occupy minimal phase space (x*v)3 >
(h/m)3 , hence has a maximum phase density
=2m (h/m)-3
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Where are we heading to?
Lec 4, Friday 17 Feb

• potential and eqs. of motion
– in general geometry
– Axisymmetric
– spherical
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Link phase space quantities

r

J(r,v)

Ek(v)

φ(r)

Vt

E(r,v)dθ/dt

vr
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C 3.1: Laplacian in various coordinates

2

2

222

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

sin

1
sin

sin

11

:Spherical

11

:lCylindrica

:Cartesians

!""
"

""

!

#

#
+$
%

&
'
(

)

#

#

#

#
+$
%

&
'
(

)

#

#

#

#
=*

#

#
+

#

#
+$
%

&
'
(

)

#

#

#

#
=*

#

#
+

#

#
+

#

#
=*

rrr
r

rr

zRR
R

RR

zyx

AS4021 Gravitational Dynamics 36

Example 3: Energy is conserved
in STATIC potential

• The orbital energy of a star is given by:
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So orbital Energy is Conserved dE/dt=0
only in “time-independent” potential.
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Example 4: Static Axisymmetric density 
Static Axisymmetric potential

• We employ a cylindrical coordinate system (R,
φ,z) e.g., centred on the galaxy and align the z axis
with the galaxy axis of symmetry.

• Here the potential is of the form φ(R,z).
• Density and Potential are Static and Axisymmetric

– independent of time and azimuthal angle
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C3.2: Orbits in an axisymmetric potential

• Let the potential which we assume to be
symmetric about the plane z=0, be φ(R,z).

• The general equation of motion of the star is

• Eqs. of motion in cylindrical coordinates
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Conservation of angular momentum
z-component Jz if axisymmetric

• The component of angular momentum about the z-
axis is conserved.

• If φ(R,z) has no dependence on θ then the
azimuthal angular momentum is conserved
– or because z-component of the torque r×F=0. (Show it)

2 2( ) 0
Z

d d
J R Jz R

dt dt
! != " = =& &
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C4.1: Spherical Static System

• Density, potential function of radius |r| only
• Conservation of

– energy E,
– angular momentum J (all 3-components)
– Argue that a star moves orbit which confined to

a plane perpendicular to J vector.
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C 4.1.0: Spherical Cow Theorem

• Most astronomical objects can be
approximated as spherical.

• Anyway non-spherical systems are too
difficult to model, almost all models are
spherical.
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Globular: A nearly spherical static system



8

AS4021 Gravitational Dynamics 43

C4.2: From Spherical Density to Mass
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C4.3: Theorems on Spherical Systems

• NEWTONS 1st THEOREM:A body that is
inside a spherical shell of matter
experiences no net gravitational force from
that shell

• NEWTONS 2nd THEOREM:The
gravitational force on a body that lies
outside a closed spherical shell of matter is
the same as it would be if all the matter
were concentrated at its centre. [BT 2.1]
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C4.4: Poisson’s eq. in Spherical systems

• Poisson’s eq. in a spherical potential with no θ or Φ
dependences is:

• BT2.1.2
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Example 5: Interpretation of Poissons Equation

• Consider a spherical distribution of mass of
density ρ(r).

r
g

drrr

dr
r

rGM

drrg

r

rGM
g

r

r

r

)(4Enclosed Mass

)(

rat  0 is andat0 since)(

)(

2

2

2

!"

##

$

$

$

%

%

%

=

&=

<%==

&=

AS4021 Gravitational Dynamics 47

• Take d/dr and multiply r2 

• Take d/dr and divide r2
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C4.5: Escape Velocity
• ESCAPE VELOCITY= velocity required in

order for an object to escape from a
gravitational potential well and arrive at ∞
with zero KE.
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Example 6: Plummer Model for star cluster
• A spherically symmetric potential of the form:

• Show corresponding to a density (use Poisson’s
eq):
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e.g., for a globular cluster a=1pc, M=105 Sun Mass
show Vesc(0)=30km/s
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What have we learned?

• Conditions for conservation of orbital
energy, angular momentum of a test particle

• Meaning of escape velocity
• How Poisson’s equation simplifies in

cylindrical and spherical symmetries
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 Lec 5, (Tue 21 Feb)
Links of quantities in spheres

g(r)

φ(r) ρ(r)

M(r)
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A worked-out example 7:
Hernquist Potential for stars in a galaxy

• E.g., a=1000pc, M0=1010 solar, show central
escape velocity Vesc(0)=300km/s,

• Show M0 has the meaning of total mass
– Potential at large r is like that of a point mass M0

– Integrate the density from r=0 to inifnity also gives M0
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Potential of globular clusters and
galaxies looks like this:
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C4.6: Circular Velocity
• CIRCULAR VELOCITY= the speed of a test

particle in a circular orbit at radius r.
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What have we learned?

• How to apply Poisson’s eq.
• How to relate

– Vesc with potential and
– Vcir with gravity

• The meanings of
– the potential at very large radius,
– The enclosed mass
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 Lec 6, (Fri, 24 Feb)
Links of quantities in spheres

g(r)

φ(r) ρ(r)

vesc

M(r)

Vcir
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C4.7: Motions in spherical potential
[BT3.1]

If spherical
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Another Proof: Angular Momentum is
Conserved if spherical

•


vrL
vvv
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direction, no torque
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So Angular Momentum L is Conserved
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v
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C4.8: Star moves in a plane (r,θ)
perpendicular to L

• Direction of angular momentum

• equations of motion are
– radial acceleration:
– tangential acceleration:
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C4.8.1: Orbits in Spherical Potentials
• The motion of a star in a centrally directed field of

force is greatly simplified by the familiar law of
conservation (WHY?) of angular momentum.

unit time

sweptarea
2r 

const

2
==

=!=

dt

d

dt

rd
rL

"

v
vv

Keplers 3rd law



11

AS4021 Gravitational Dynamics 61

C 4.9:  Radial part of motion
• Energy Conservation (WHY?)
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 C5.0: Orbit in the z=0 plane of
a disk potential φ(R,z).

• Energy/angular momentum of star  (per unit
mass)

• orbit bound within
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C5.1: Radial Oscillation
• An orbit is bound between two radii: a loop
• Lower energy E means thinner loop (nearly

circular closed) orbit
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C5.2: Eq of Motion for planar orbits

• EoM:

eff

eff
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      If circular orbit R=cst, 0 =>  0   at  
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Apocenter

Pericenter
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Apocenter

Peri

Apo
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 C5.3: Apocenter and pericenter

• No radial motion at these turn-around radii
– dr/dt =Vr  =0 at apo and peri

• Hence
• Jz = R Vt

          = RaVa = RpVp

• E = ½ (Vr
2 + Vt

2 ) + Φ (R,0) = ½ Vr
2 + Φeff (R,0)

       = ½ Va
2 + Φ (Ra,0)

       = ½ Vp
2 + Φ (Rp,0)
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Lec7: Orbit in axisymmetric disk
potential φ(R,z).

• Energy/angular momentum of star  (per unit
mass)

• orbit bound within
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C5.4 EoM for nearly circular orbits

• EoM:

• Taylor expand

– x=R-Rg
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eff eff

2 2
2 2eff eff1 1

eff 2 22 2

( ,0) ( ,0)

2 2 2 2

      ;              

      0      at   , 0

       / 2    / 2 ...

g g
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R z
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R R z
R z

x z
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Sun’s Vertical and radial epicycles

• harmonic oscillator +/-10pc every 108 yr
– epicyclic frequency :
– vertical frequency     :

2 2
                     R ,      and     

           

R z z! "= # = #&& &&

!

!
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Lec 8, C7.0: Stars are not enough: add
Dark Matter in galaxies [BT10.4]

NGC 3198 (Begeman 1987)
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Bekenstein & Milgrom (1984)
 Bekenstein (2004), Zhao & Famaey (2006)

• Modify gravity g,
– Analogy to E-field in medium of varying Dielectric

• Gradient of Conservative potential

*

0 0

0

0 0

g
( )

4 G

G(g/a ) = (1+ a  /g) G

              ~ G                     if  g= | |

              ~ G a /  > G      if g <a  

r

a

g

!
"

#

$ %
&' • =( )

* +

' >

Not Standard
Belief!
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Researches of
Read & Moore (2005)

MOND and DM similar in potential, rotation curves
and orbits... Personal view!
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Explained: Fall/Rise/wiggles in
Ellip/Spiral/Dwarf galaxies

Views of Milgrom & Sanders, Sanders & McGaugh
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What have we learned?

• Orbits in a spherical potential or in the mid-
plane of a disk potential

• How to relate Pericentre, Apocentre through
energy and angular momentum
conservation.

• Rotation curves of galaxies
– Need for Dark Matter or a boosted gravity
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Tutorial: Singular Isothermal Sphere

• Has Potential Beyond ro:
• And Inside r<r0

• Prove that the potential AND gravity is continuous at r=ro
if

• Prove density drops sharply to 0 beyond r0, and inside r0

• Integrate density to prove total mass=M0
• What is circular and escape velocities at r=r0?
• Draw diagrams of M(r), Vesc(r), Vcir(r), |Phi(r)|, rho(r),

|g(r)| vs. r  (assume V0=200km/s, r0=100kpc).

r

GM
r
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r
vr !! += ln)( 2
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Another Singular Isothermal Sphere
• Consider a potential Φ(r)=V0

2ln(r).
• Use Jeans eq. to show the velocity dispersion σ (assume isotropic) is

constant V0
2/n for a spherical tracer population of density A*r-n ; Show

we required constants A = V0
2/(4*Pi*G). and n=2 in order for the

tracer to become a self-gravitating population. Justify why  this model
is called Singular Isothermal Sphere.

• Show stars with a phase space density f(E)= exp(-E/σ2) inside this
potential well will have no net motion <V>=0, and a constant rms
velocity σ in all directions.

• Consider a black hole of mass m on a rosette orbit bound between
pericenter r0 and apocenter 2r0 .  Suppose the black hole decays its
orbit due to dynamical friction to a circular orbit r0/2 after time t0.
How much orbital energy and angular momentum have been
dissipated?  By what percentage has the tidal radius of the BH
reduced?  How long would the orbital decay take for a smaller black
hole of mass m/2 in a small galaxy of potential Φ(r)=0.25V0

2ln(r). ?
Argue it would take less time to decay from r0  to r0 /2 then from r0/2 to
0.
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Lec 9: C8.0: Incompressible df/dt=0
• Nstar identical particles moving in a small

bundle in phase space (Vol=Δx Δ p),
• phase space deforms but maintains its area.

– Likewise for y-py and z-pz.

    Phase space density f=Nstars/Δx Δ p ~ const

THEOREM'LIOUVILLES',0,0 ==
!! d

dNstar

d

dVol

px

x

 px

x
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C8.1: Stars flow in phase-space
[BT4.1]

• Flow of points in phase space ~
   stars moving along their orbits.
• phase space coords:

),(),(             

),...,,(),(          621

!"#==

$$

vvxw

wwwwvx

&&&
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C8.2 Collisionless Boltzmann
Equation

• Collisionless df/dt=0:

• Vector form

6
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               ( , , ) ( , ) 0

dt
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C8.3 DF & its 0th ,1st , 2nd moments

3 3

3

3 3 3

x

2 2 2 2

x y z

( , )
( )

( , )

where A( , ) 1,V ,  ...

e.g., verify V V V V
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• E.g: rms speed of air particles in a box dx3 :
2 2 2

o 2
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m n exp
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C8.4: CBE   Moment/Jeans
Equations [BT4.2]

• Phase space incompressible
  df(w,t)/dt=0, where w=[x,v]: CBE

• taking moments U=1, vj, vjvk by integrating
over all possible velocities
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C8.5: 0th moment (continuity) eq.

• define spatial density of stars n(x)

• and the mean stellar velocity v(x)

• then the zeroth moment equation becomes
( )

3

3

1,2,3

                  

1
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i i
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i i

n fd v

v fv d v
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C8.6: 2nd moment Equation

similar to the Euler equation for a fluid flow:
– last term of RHS represents pressure force 
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Lec 10, C8.7: Meaning of pressure
in star system

• What prevents a non-rotating star cluster
collapse into a BH?
– No systematic motion as in Milky Way disk.
– But random orbital angular momentum of stars!
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C8.8: Anisotropic Stress Tensor
• describes a pressure which is

–  perhaps stronger in some directions than other

• the tensor is symmetric, can be diagonalized
–  velocity ellipsoid with semi-major axes given

by
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 C8.9: Prove Tensor Virial Theorem
(BT4.3)

• Many forms of Viral
theorem, E.g.

2 2 2 2

 etc

.

Scaler Virial Theorem
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C9.0: Jeans theorem [BT4.4]

• For most stellar systems the DF depends on (x,v)
through generally 1,2 or 3 integrals of motion
(conserved quantities),

• Ii(x,v), i=1..3  f(x,v) = f(I1(x,v), I2(x,v), I3(x,v))
• E.g., in Spherical Equilibrium, f is a function of

energy E(x,v) and ang. mom. vector L(x,v).’s
amplitude and z-component

)ˆ||,||,(),( zLLEfvxf !=
vv
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C9.1: An anisotropic incompressible spherical
fluid, e.g, f(E,L) =exp(-E/σ0

2)L2β [BT4.4.4]

• Verify <Vr
2> = σ0

2, <Vt
2>=2(1-β) σ0

2

• Verify <Vr> = 0
• Verify CBE is satisfied along the orbit or flow:

( , ) ( , ) ( , )
0 0

df E L f E L dE f E L dL

dt E dt L dt

! !
= + = +

! !

0 for static potential,      0 for spherical potential

So f(E,L) indeed constant along orbit or flow
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C9.2: Apply JE & PE to
measure Dark Matter [BT4.2.1d]

• A bright sub-component of observed density
n*(r) and anisotropic velocity dispersions

   <Vt
2>= 2(1-β)<Vr

2>
• in spherical potential φ(r) from total (+dark)

matter density ρ(r)

( )
2 2

2

2

0

2

21
JE:          - *

*
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t r

r
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v vd d
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n dr r dr
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C9.3: Measure total Matter density ρ(r)

Assume anistropic parameter beta, substitute
JE for stars of density n* into PE, get

• all quantities on the LHS are, in principle,
determinable from observations.
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C9.4: Spherical Isotropic f(E) Equilibriums
[BT4.4.3]

• ISOTROPIC β=0:The distribution function f(E)
only depends on |V| the modulus of the velocity,
same in all velocity directions.

( )
2

2 2 2 2 2 2

tangential

, / 2 ( )

1
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2
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x y z r
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Note:the tangential
direction has θ and φ
components
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C9.5: subcomponents

• Non-SELF-GRAVITATING: There are
additional gravitating matter

• The matter density that creates the potential
is NOT equal to the density of stars.
– e.g., stars orbiting a black hole is non-self-

gravitating.
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C9.6: subcomponents add up
to the total gravitational mass

1 2

1 2

Phase density of stars plus dark matter

 

density of stars plus dark matter 

Total density  shared total potential

A B A B

f f f

! ! !
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+ = +

= +

= +
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What have we learned?

• Meaning of anistrpic pressure and
dispertion.

• Usage of Jeans theorem [phase space]
• Usage of Jeans eq. (dark matter)
• Link among quantities in sphere.



17

AS4021 Gravitational Dynamics 97

C10.0: Galactic disk mass density from
vertical equilibrium

• Use JE and PE in cylindrical coordinates.
• drop terms 1/R or d/dR ( d/dz terms dominates).

– |z|< 1kpc < R~8kpc near Sun

• Combine vertical hydrostatic eq. and  gravity eq. :

• RHS are observables
• => JE/PE useful in weighing the galaxy disk.
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A toy galaxy

2 2 2 2 2 2 2 1/ 2

0 0 ( , ) 0.5 ln( 2 ) (1 ( ) /1 ) ,

0 100 / .  Argue 1st & 2nd terms of above 

galaxy potential resemble dark halo and stars respectively. 

R z v R z v R z kpc

v km s

! "
= + " + +

=

Calculate the circular velocity and dark halo density 

on equator (R,z) (1kpc,0)

Estimate the total mass of stars and dark matter inside 10kpc.

Estimate the star column density inside |z|<0.1kpc, R=1kpc.

=

If you like
challenge…

Learn to
analyse
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Helpful Math/Approximations
(To be shown at AS4021 exam)

• Convenient Units

• Gravitational Constant

• Laplacian operator in various
coordinates

• Phase Space Density f(x,v)
relation with the mass in a
small position cube and
velocity cube
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Thinking of a globular cluster …
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C10.1: Link phase space quantities

r

J(r,v)

K(v)

φ(r)

Vt

E(r,v)dθ/dt

vr
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C10.2: Link quantities in spheres

g(r)

φ(r) ρ(r)
vesc

2(r)

M(r)
Vcir2 (r)

 σr
2(r)

 σt
2(r)

f(E,L)


