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Lec 4, Friday 17 Feb

• potential and eqs. of motion
– in general geometry
– Axisymmetric
– spherical

Laplacian in various coordinates

2

2

222

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

sin

1
sin

sin

11

:Spherical

11

:lCylindrica

:Cartesians

!""
"

""

!

#

#
+$
%

&
'
(

)

#

#

#

#
+$
%

&
'
(

)

#

#

#

#
=*

#

#
+

#

#
+$
%

&
'
(

)

#

#

#

#
=*

#

#
+

#

#
+

#

#
=*

rrr
r

rr

zRR
R

RR

zyx

Example: Energy is conserved
in STATIC potential

• The orbital energy of a star is given by:
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So orbital Energy is Conserved dE/dt=0
only in “time-independent” potential.

Static Axisymmetric density 
Static Axisymmetric potential

• We employ a cylindrical coordinate system (R,
φ,z) e.g., centred on the galaxy and align the z axis
with the galaxy axis of symmetry.

• Here the potential is of the form φ(R,z).
• Density and Potential are Static and Axisymmetric

– independent of time and azimuthal angle
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Orbits in an axisymmetric potential

• Let the potential which we assume to be
symmetric about the plane z=0, be φ(R,z).

• The general equation of motion of the star is

• Eqs. of motion in cylindrical coordinates
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Conservation of angular momentum
z-component Jz if axisymmetric

• The component of angular momentum about the z-
axis is conserved.

• If φ(R,z) has no dependence on θ then the
azimuthal angular momentum is conserved
– or because z-component of the torque r×F=0. (Show it)
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Spherical Static System

• Density, potential function of radius |r| only
• Conservation of

– energy E,
– angular momentum J (all 3-components)
– Argue that a star moves orbit which confined to

a plane perpendicular to J vector.

Spherical Cow Theorem

• Most astronomical objects can be
approximated as spherical.

• Anyway non-spherical systems are too
difficult to model, almost all models are
spherical.

Globular: A nearly spherical static system From Spherical Density to Mass
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Theorems on Spherical Systems

• NEWTONS 1st THEOREM:A body that is
inside a spherical shell of matter
experiences no net gravitational force from
that shell

• NEWTONS 2nd THEOREM:The
gravitational force on a body that lies
outside a closed spherical shell of matter is
the same as it would be if all the matter
were concentrated at its centre.

Poisson’s eq. in Spherical systems

• Poisson’s eq. in a spherical potential with no θ or Φ
dependence is:
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Interpretation of Poissons
Equation

• Consider a spherical distribution of mass of
density ρ(r).
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• Take d/dr and multiply r2 

• Take d/dr and divide r2
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Escape Velocity
• ESCAPE VELOCITY= velocity required in

order for an object to escape from a
gravitational potential well and arrive at ∞
with zero KE.
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Plummer Model for star cluster
• A spherically symmetric potential of the form:

• Show corresponding to a density (use Poisson’s
eq):

22
ar

GM

+
!="

2

5

2

2

3
1

4

3
!

""
#

$
%%
&

'
+=
a

r

a

M

(
)

e.g., for a globular cluster a=1pc, M=105 Sun Mass
show Vesc(0)=30km/s

What have we learned?

• Conditions for conservation of orbital
energy, angular momentum of a test particle

• Meaning of escape velocity
• How Poisson’s equation simplifies in

cylindrical and spherical symmetries

Lec 5, Tue 21 Feb
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A worked-out example:
Hernquist Potential for stars in a galaxy

• E.g., a=1000pc, M0=1010 solar, show central
escape velocity Vesc(0)=300km/s,

• Show M0 has the meaning of total mass
– Potential at large r is like that of a point mass M0

– Integrate the density from r=0 to inifnity also gives M0
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Potential of globular clusters and
galaxies looks like this:
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Links between dynamical quantities

g(r)

φ(r) ρ(r)

vesc

M(r)

Vcir

Circular Velocity
• CIRCULAR VELOCITY= the speed of a test

particle in a circular orbit at radius r.
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For a point mass M: Show in a uniform density sphere
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What have we learned?

• How to apply Poisson’s eq.
• How to relate

– Vesc with potential and
– Vcir with gravity

• The meanings of
– the potential at very large radius,
– The enclosed mass

Lec 6, Fri, 24 Feb
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Motions in spherical potential
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Proof: Angular Momentum is Conserved if
spherical
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In static spherical potentials: star
moves in a plane (r,θ)

• central force field
• angular momentum

• equations of motion are
– radial acceleration:
– tangential acceleration:
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Orbits in Spherical Potentials
• The motion of a star in a centrally directed field of

force is greatly simplified by the familiar law of
conservation (WHY?) of angular momentum.
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 Orbit in the z=0 plane of
a disk potential φ(R,z).

• Energy/angular momentum of star  (per unit
mass)

• orbit bound within
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Radial Oscillation
• An orbit is bound between two radii: a loop
• Lower energy E means thinner loop (nearly

circular closed) orbit
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Eq of Motion for planar orbits

• EoM:
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Apocenter

Pericenter

Apocenter

Peri

Apo

 Apocenter and pericenter

• No radial motion at these turn-around radii
– dr/dt =Vr  =0 at apo and peri

• Hence
• Jz = R Vt

          = RaVa = RpVp

• E = ½ (Vr
2 + Vt

2 ) + Φ (R,0) = ½ Vr
2 + Φeff (R,0)

       = ½ Va
2 + Φ (Ra,0)

       = ½ Vp
2 + Φ (Rp,0)

Orbit in axisymmetric disk potential φ
(R,z).

• Energy/angular momentum of star  (per unit
mass)

• orbit bound within

( )
2

2 21
2

2
2 21

2 2

2 21
eff2

eff

           

                
2

              (R,z)   

                      ( , )

 

z

E R R z

J
R z

R

R z

E R z

!" #= + + +$
% &' (

" #= + + +$' (

" #= + +$' (

) * $

&& &

& &

& &



7

EoM for nearly circular orbits

• EoM:

• Taylor expand

– x=R-Rg
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Sun’s Vertical and radial epicycles

• harmonic oscillator +/-10pc every 108 yr
– epicyclic frequency :
– vertical frequency     :
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Links between dynamical quantities

g(r)

φ(r) ρ(r)

vesc

M(r)

Vcir

Stars are not enough: add Dark
Matter in galaxies

NGC 3198 (Begeman 1987)

Bekenstein & Milgrom (1984)
 Bekenstein (2004), Zhao & Famaey (2006)

• Modify gravity g,
– Analogy to E-field in medium of varying Dielectric

• Gradient of Conservative potential

*

0 0

0

0 0

g
( )

4 G

G(g/a ) = (1+ a  /g) G

              ~ G                     if  g= | |

              ~ G a /  > G      if g <a  

r

a

g

!
"

#

$ %
&' • =( )

* +

' >

MOND similar to DM
in potential, rotation curve, orbit

Read & Moore (2005)

Zhao (2005)
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Explained: Fall/Rise/wiggles in
Ellip/Spiral/Dwarf galaxies

Milgrom & Sanders, Sanders & McGaugh

What have we learned?

• Orbits in a spherical potential or in the mid-
plane of a disk potential

• How to relate Pericentre, Apocentre through
energy and angular momentum
conservation.

• Rotation curves of galaxies
– Need for Dark Matter or a boosted gravity

Tutorial: Singular Isothermal Sphere

• Has Potential Beyond ro:
• And Inside r<r0

• Prove that the potential AND gravity is continuous at r=ro
if

• Prove density drops sharply to 0 beyond r0, and inside r0

• Integrate density to prove total mass=M0
• What is circular and escape velocities at r=r0?
• Draw diagrams of M(r), Vesc(r), Vcir(r), |Phi(r)|, rho(r),

|g(r)| vs. r  (assume V0=200km/s, r0=100kpc).
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Another Singular Isothermal Sphere
• Consider a potential Φ(r)=V0

2ln(r).
• Use Jeans eq. to show the velocity dispersion σ (assume isotropic) is

constant V0
2/n for a spherical tracer population of density A*r-n ; Show

we required constants A = V0
2/(4*Pi*G). and n=2 in order for the

tracer to become a self-gravitating population. Justify why  this model
is called Singular Isothermal Sphere.

• Show stars with a phase space density f(E)= exp(-E/σ2) inside this
potential well will have no net motion <V>=0, and a constant rms
velocity σ in all directions.

• Consider a black hole of mass m on a rosette orbit bound between
pericenter r0 and apocenter 2r0 .  Suppose the black hole decays its
orbit due to dynamical friction to a circular orbit r0/2 after time t0.
How much orbital energy and angular momentum have been
dissipated?  By what percentage has the tidal radius of the BH
reduced?  How long would the orbital decay take for a smaller black
hole of mass m/2 in a small galaxy of potential Φ(r)=0.25V0

2ln(r). ?
Argue it would take less time to decay from r0  to r0 /2 then from r0/2 to
0.

 Incompressible df/dt=0
• Nstar identical particles moving in a small

bundle in phase space (Vol=Δx Δ p),
• phase space deforms but maintains its area.

– Likewise for y-py and z-pz.

    Phase space density f=Nstars/Δx Δ p ~ const

THEOREM'LIOUVILLES',0,0 ==
!! d

dNstar

d

dVol

px

x

 px

x

Stars flow in phase-space

• Flow of points in phase space ~
   stars moving along their orbits.
• phase space coords:

),(),(             

),...,,(),(          621

!"#==

$$

vvxw

wwwwvx

&&&



9

Collisionless Boltzmann
Equation

• Collisionless df/dt=0:

• Vector form
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