Lec 4, Friday 17 Feb

* potential and eqs. of motion
— in general geometry
— Axisymmetric
— spherical

Laplacian in various coordinates

Cartesians :
2 2 2
v =Lz 872"'672
ax~  dy° oz
Cylindrical :
2 2
volifpay 1@ o
ROR\ oR) R* 99> oz
Spherical :

, L a(,0 1 a(. .9 1 9’
=S \|" |t 2= —|sinf— |+ 2 2 a2
ror dar ) r°sin@ 00 a0 ) r°sin“0 d¢

Example: Energy is conserved

in STATIC potential
+ The orbital energy of a star is given by:
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So orbital Energy is Conserved dE/dt=0
only in “time-independent” potential.

Static Axisymmetric density =
Static Axisymmetric potential
* We employ a cylindrical coordinate system (R,

¢,z) e.g., centred on the galaxy and align the z axis
with the galaxy axis of symmetry.

+ Here the potential is of the form ¢(R,z).
+ Density and Potential are Static and Axisymmetric

— independent of time and azimuthal angle
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Orbits in an axisymmetric potential

* Let the potential which we assume to be
symmetric about the plane z=0, be ¢(R,z).

» The general equation of motion of the star is

d’F Eq. of Moti
L _V(R,2) q. of Motion

* Egs. of motion in cylindrical coordinates
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Conservation of angular momentum
z-component Jz if axisymmetric

d

dt

* The component of angular momentum about the z-
axis is conserved.

J,=R6="1Jz =di(Rzé) =0
t

» If ¢(R,z) has no dependence on 6 then the
azimuthal angular momentum is conserved

— or because z-component of the torque rxF=0. (Show it)




Spherical Static System

* Density, potential function of radius |r] only
» Conservation of

— energy E,

— angular momentum J (all 3-components)

— Argue that a star moves orbit which confined to
a plane perpendicular to J vector.

Spherical Cow Theorem

» Most astronomical objects can be
approximated as spherical.

* Anyway non-spherical systems are too
difficult to model, almost all models are
spherical.

Globular: A nearly spherical static system

Im a globular cluster

. - &,
Far far away in the LIMIC

Zooming in on'R136

From Spherical Density to Mass
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Theorems on Spherical Systems

* NEWTONS 15t THEOREM:A body that is
inside a spherical shell of matter

experiences no net gravitational force from
that shell

* NEWTONS 2" THEOREM:The
gravitational force on a body that lies
outside a closed spherical shell of matter is
the same as it would be if all the matter
were concentrated at its centre.

Poisson’s eq. in Spherical systems

+ Poisson’s eq. in a spherical potential with no 6 or ®
dependence is:
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Interpretation of Poissons
Equation

+ Consider a spherical distribution of mass of

density p(r).
g GMO) <
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Mass Enclosed =f4m2p(r)dr

* Take d/dr and multiply 12 >

r ? =-gr’=GM(r)= Q;f4nr2p(r)dr]

.
 Take d/dr and divide r2->
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Escape Velocity

* ESCAPE VELOCITY= velocity required in
order for an object to escape from a
gravitational potential well and arrive at
with zero KE. —0 often

<1,
() = $(20) =~ Ve
> Voo (1) = J2¢(%0) = 29(r)

Plummer Model for star cluster

* A spherically symmetric potential of the form:
GM

¢=_Vr2+a2

e.g., for a globular cluster a=1pc, M=10° Sun Mass
show Vesc(0)=30km/s

» Show corresponding to a density (use Poisson’s
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What have we learned?

» Conditions for conservation of orbital
energy, angular momentum of a test particle

* Meaning of escape velocity

* How Poisson’s equation simplifies in
cylindrical and spherical symmetries
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A worked-out example:
Hernquist Potential for stars in a galaxy

GM

¢.(r) =-——=2, use Poisson eq. show
a+r
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M, (r r
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p(r) 2na’ | a g
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+ E.g., a=1000pc, M,=10'%solar, show central
escape velocity Vesc(0)=300km/s,

* Show M, has the meaning of total mass
— Potential at large r is like that of a point mass M,

— Integrate the density from r=0 to inifnity also gives M,

Potential of globular clusters and
galaxies looks like this:

¢(0) = —const (finite well at centre)
P(r) <t (Kepler for large r)
— Centre is the minimum of potential with escape velocity
2GM,
a

Ve (0) =

Links between dynamical quantities
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Circular Velocity

* CIRCULAR VELOCITY= the speed of a test
particle in a circular orbit at radius r.
GM(r)

2
r

2
- v -

2
=>M(r)=%

For a point mass M: Show in a uniform density sphere

v(r) = @ v.(r)= @r since M(r) =%m’3p

What have we learned?

How to apply Poisson’s eq.
How to relate

— Vesc with potential and

— Vcir with gravity

* The meanings of

— the potential at very large radius,
— The enclosed mass
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Motions in spherical potential

Equation of motion If spherical
dx

Y __%
A ! ar

ar

. Conserved if spherical static
If no gravity

X(1) = Vot +Xo E=iv2+¢(r)
V() =vo 2

L=J=x®v=rv,n

Proof: Angular Momentum is Conserved if

spherical
« L=rxv
9 - — —
d—=M=d—r>ﬂ7+Fx—v=0+Fxg
dt dt dt dt

Since (?—¢= 0 then the spherical force g is in the r
direction, no torque
—>both cross products on the RHS = 0.

So Angular Momentum L is Conserved
dL
220
dt

In static spherical potentials: star
moves in a plane (r,0)

« central force field g=gf

* angular momentum rxieL

* equations of motion are
—radial acceleration: i—rf? = g(r)
—tangential acceleration: 270 +r* =0

726 = constant = L

Orbits in Spherical Potentials

+ The motion of a star in a centrally directed field of
force is greatly simplified by the familiar law of
conservation (WHY?) of angular momentum.

__dr
=rx——=const
dt

P do _parea swept

dt unit time \

Keplers 31 law

Energy Conservation (WHY?)
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Orbit in the z=0 plane of
a disk potential ¢(R,z).
* Energy/angular momentum of star (per unit
mass)
E=1 [R2 +(ro )2] + d(R,0)

=%[R2] +[2J;€2 + P(R,0)]

= % R? ] + Dy (R,0)
« orbit bound within

— E=®_,(R,0)




Radial Oscillation

* An orbit is bound between two radii: a loop

» Lower energy E means thinner loop (nearly
circular closed) orbit

Defr ‘ 7
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Eq of Motion for planar orbits

* EoM:

R =-—<; z=0

If circular orbit R=cst, z = 0 => % =0 at R=R

Apo'_ } Apocenter

Apocenter and pericenter

* No radial motion at these turn-around radii
—dr/dt =V, =0 at apo and peri
* Hence
*J,=RV,
=R,V,=R,V,

«E=%(V2+V2)+® ([R0)=%V2+d4(R0)
=% V.2 + 0 (R,0)
=% V,2+ 0 (R,0)

Orbit in axisymmetric disk potential ¢
(R.2).
» Energy/angular momentum of star (per unit
mass)

E=§[R2+(R6')2+z'2:|+<1>
. J?
=%[R2+z'2]+2;€2+<1)
. =+ R2+22]+d>cff(R,z)
* orbit bound within

= E= q)cff(Raz)




EoM for nearly circular orbits

R‘=_5¢'err‘ 2=_‘9(Den‘
* EoM: JR "’ dz
P eff _ &q)eff _

=0 at R=R,z=0
&ﬁ dz £
* Taylor expan
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Sun’s Vertical and radial epicycles
« harmonic oscillator +/-10pc every 108 yr
K —epicyclic frequency :

v —vertical frequency

R=-x?R, and Z=-—v’z

Links between dynamical quantities
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Stars are not enough: add Dark
Matter in galaxies
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NGC 3198 (Begeman 1987)

Bekenstein & Milgrom (1984)
Bekenstein (2004), Zhao & Famaey (2006)

* Modify gravity g,
— Analogy to E-field in medium of varying Dielectric

g
—Ve — | = p.(r)
(4JL’G ) P-C
G(g/a,) = (I+a, /2) G
~G if g=|Vo|>a,
~Gay/g>G if g <a,

Gradient of Conservative potential

MOND similar to DM
in potential, rotation curve, orbit
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Explained: Fall/Rise/wiggles in
Ellip/Spiral/Dwarf galaxies

100 .

1 NGC 1560

M/ Lp)y = 04
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INGC 2903
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20
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Milgrom & Sanders, Sanders & McGaugh

<pp> = 232 mi

What have we learned?

* Orbits in a spherical potential or in the mid-
plane of a disk potential

» How to relate Pericentre, Apocentre through
energy and angular momentum
conservation.

» Rotation curves of galaxies
— Need for Dark Matter or a boosted gravity

Tutorial: Singular Isothermal Sphere

_GM,

. o(r) =
» Has Potential Beyond r,: ro, | r
+ And Inside r<r, $(r) =y n7 +9,
» Prove that the potential AND gravity is continuous at r=r,
3 2
if ¢y =-GM /1, =-v,
» Prove density drops sharply to 0 beyond r0, and inside rO
%
4nGr?

* Integrate density to prove total mass=M0

p() =

* What is circular and escape velocities at r=r0?
* Draw diagrams of M(r), Vesc(r), Vcir(r), [Phi(r)|, rho(r),
|g(r)] vs. r (assume V0=200km/s, r0=100kpc).

Another Singular Isothermal Sphere

« Consider a potential ®(r)=V?In(r).

« Use Jeans eq. to show the velocity dispersion ¢ (assume isotropic) is
constant V%/n for a spherical tracer population of density A*r™ ; Show
we required constants A = V*(4*P1*G). and n=2 in order for the
tracer to become a self-gravitating population. Justify why this model
is called Singular Isothermal Sphere.

« Show stars with a phase space density f(E)= exp(-E/c?) inside this
potential well will have no net motion <V>=0, and a constant rms
velocity ¢ in all directions.

« Consider a black hole of mass m on a rosette orbit bound between
pericenter r, and apocenter 2r,, . Suppose the black hole decays its
orbit due to dynamical friction to a circular orbit ry/2 after time t,.
How much orbital energy and angular momentum have been
dissipated? By what percentage has the tidal radius of the BH
reduced? How long would the orbital decay take for a smaller black
hole of mass m/2 in a small galaxy of potential ®(r)=0.25V2In(r). ?
Argue it would take less time to decay from r,, to r, /2 then from r/2 to
0.

Incompressible ~ df/dt=0
* N, identical particles moving in a small
bundle in phase space (Vol=A, A ),
* phase space deforms but maintains its area.
— Likewise for y-p, and z-p,.

U

dVol _ 0 dNstar _
dA dA
Phase space density f=Nstars/A, A  ~ const

0, 'LIOUVILLES THEOREM'

5

Stars flow in phase-space

* Flow of points in phase space ~
stars moving along their orbits.
* phase space coords: (X,) =w= (W, W,,..., W)
w=(1,9) = (v,-VP)




Collisionless Boltzmann
Equation
* Collisionless df/dt=0:
%f(x,v,t)=(%+2%:7a)f(w,t) ~0

3
Q+2 L af]
at ax, dx, dv,

¢ Vector form
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