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The non-linear MOND field equation

∇⋅[∣∣∇∣∣
a0 ∇]=4G

g=−∇

(Bekenstein & Milgrom 1984)

a0=1.2×10−10 m s−2

replaces the Poisson equation

characteristic acceleration
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gravitational field 

the µ function

Newtonian regime
(high surface density systems)

(Bekenstein & Milgrom 1984)
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THE MOND FIELD EQUATION



∣∇∣
a0 ∇=∇NS

The solenoidal field S=curl h

The MOND potential φ is related to the Newtonian potential φN by

S=∇×h  is an unknown solenoidal field 

S≠0

S=0Only in case of for spherical, cylindrical, planar symmetry        
=>                           easy algebraic solution (Milgrom 1983 empirical formula)

In general           and one has to solve the non-linear field equation 

∇⋅[∣∣∇∣∣
a0 ∇]=4G

Also for axisymmetric systems!!!

∇=∇N

THE MOND FIELD EQUATION

(Bekenstein & Milgrom 1984)



An exception: the Kuzmin disk 

The razor-thin Kuzmin disk is the ONLY known axisymmetric 
model for which         because S=0 g N≡∣∣∇N∣∣=g N N

(Brada & Milgrom 1995)

KUZMINR=
aM

2R2a23/2
Kuzmin disk surface density

 The MOND potential of the Kuzmin disk is known analytically 
 Useful to test  MOND out of spherical symmetry
 BUT quite unrealistic as a galaxy model!

KUZMINR , z=GMa0 ln R2∣z∣a21/2For instance, in deep MOND:

KUZMINR , z KUZMINR , z

ANALYTICAL SOLUTIONS



Analytical axisymmetric and triaxial
MOND density-potential pairs  

 We propose a general method to build analytical axisymmetric and triaxial 
density-potential pairs
 φ-to-ρ approach: deformation of a spherically symmetric solution

0r ⇒0r 

(Ciotti, Londrillo & Nipoti 2006, Apj)

r , ,≡0r 1r , ,⇒r , ,

1) Choose a spherical density and compute the MOND potential:

2) Add an aspherical function to the potential and compute the corresponding density 
using the MOND field equation:

3) If the density is everywhere positive (φ, ρ) is an aspherical MOND density-potential pair

FOR A SUITABLE CHOICE OF φ1  AND  SMALL ENOUGH  λ  A POSITIVE DENSITY IS FOUND
 

ANALYTICAL SOLUTIONS



An example: analytical axisymmetric and triaxial
Hernquist models in MOND   

z log ρ

● Analytical density & potential           (+)  
● General method                               (+)
● Realistic density profile                    (+)
● Significant flattening  (0.6< b/a <1)  (+)                                              
         
● Not highly flattened systems            (-)
● Density is not 100% under control     (-)           

Isodensity contours Density profile

ANALYTICAL SOLUTIONS

A numerical
 potential solver
is still needed 

0r =
M
2

1

r 1r 3

1r ,∝
r cos2

r12



NUMERICAL SOLUTIONS

 We developed a new numerical solver for the non-linear MOND field equation 
 Non-linear elliptic equations -> relaxation method -> Newton iterative method
 Spherical coordinates grid 
 Spectral method in angular variables (spherical harmonics)
 Finite differences in radial coordinate
 The solver can be used in particle-mesh N-body codes

 Designed for finite-mass, single-peaked density distributions 

(Ciotti, Londrillo & Nipoti 2006, Apj)
A new numerical MOND potential solver

➔ Literature: very little work on numerical solution of the MOND field equation              
                   (Brada & Milgrom 1995, 1999: Cartesian coordinates + multigrid method)

N r , N  , N

(e.g. Londrillo & Messina 1990)



NUMERICAL SOLUTIONS

 The numerical  method  

Newton iteration

Exact operator: 
­ Quadratic convergence 
­ Inversion of a 3­D matrix required
­ Numerical difficulties

Approximate operator: 
­ Only Linear convergence 
­ Exploits spherical harmonics
­ Inversion of a 1­D matrix

Inefficient!

Accurate  and 
efficient! 

At each iteration 
step, one radial 

equation  for each 
(l,m) component 

NO!

YEs!



NUMERICAL SOLUTIONS

TESTING THE NEW NUMERICAL SOLVER

Comparison with non-spherical analytical solutions:

 Kuzmin disk
 Triaxial Hernquist models

max

r.m.s.



APPLICATIONS: ESTIMATING THE SOLENOIDAL FIELD

HOW IMPORTANT IS THE SOLENOIDAL FIELD S?

We used the numerical solver to estimate the solenoidal field S in astrophysically relevant systems 

 S is typically small compared to the MOND acceleration g (S/g<0.1)  (in agreement 
with Brada & Milgrom 1995)
 This is not always true: in deep MOND systems (e.g. low-surface density 

axisymmetric Hernquist models) s/g is as high as 0.6 at the centre! 

S=∇−∇N

MOND rotation curve 
for an exponential disk

Yellow: exact
Red: assume S=0 

 for an axysymmetric Hernquist model
S

∣∣∇∣∣



APPLICATIONS: DISK VERTICAL FORCE: MOND vs DARK MATTER 

VERTICAL FORCE IN DISK GALAXIES IN MOND AND DM  

 Given a the surface density of baryons in a disk galaxy MOND predicts the vertical force field
 For the same galaxy, in a DM scenario the disk+(spherical)halo model reproducing the 

rotation curve predicts a different vertical force field 
 Good measures of the vertical velocity dispersion of observed disk galaxis can discriminate  

between the two scenarios

             NUMERICAL SOLUTION 
Exponential disk:  M=1010 Msun
                              hR= 3kpc,  hz= 0.3 kpc

Preliminary results  (Zhao, Nipoti, Londrillo & Ciotti in prep)

 R=hR R=3hR

MOND

DM

DM

MOND

             ANALYTICAL SOLUTION 
Kuzmin disk:  M=1010 Msun
                        hR= 2.5kpc

MOND

DM

R/kpc

Midplane vertical velocity disp.

Both MOND and disk+DM halo reproduce the same rotation curve
 BUT MOND PREDICTS HIGHER VERTICAL VELOCITY DISPERSION 

THAN DISK+DARK MATTER HALO NEWTONIAN GRAVITY 

MOND

DM

Application to observational data: 
MILKY WAY  (vertical vel disp. in the solar neighborhood) / other galaxies



APPLICATIONS: N-BODY SIMULATIONS IN MOND

N-body simulations in MOND 

 No Green function   -->  NO TREECODE, NO DIRECT N-BODY CODE
 Instead use                 --> PARTICLE-MESH CODES
 WE CANNOT NEGLECT THE SOLENOIDAL FIELD S                                           

      (even if S is typically small in stationary systems!)
 WE MUST SOLVE EXACTLY THE FIELD EQUATION 

The ONLY MOND N-body 
simulations so far  were those by  

Brada & Milgrom (1999, 2000).
Few applications: disk stability, 

external field effect 

If one neglects the solenoidal field S, 
momentum is not conserved 

(Felten 1984, Bekenstein & Milgrom 1984)



APPLICATIONS: N-BODY SIMULATIONS IN MOND

A new particle-mesh MOND N-body code

 

(Londrillo, Nipoti & Ciotti in preparation)

 We developed a new code to run N-body simulations in MOND
 Standard particle-mesh technique used in Newtonian codes 
 The Poisson solver is replaced  by our new MOND potential solver  
 Standard leap-frog time integration
 The code is (partly) parallel

 Particles

 Density on grid

 Force
on grid

Particle->mesh
interpolation MOND 

potential solver

Mesh->particle
interpolation



APPLICATIONS: N-BODY SIMULATIONS IN MOND

Simulations of dissipationless collapse in MOND

 
 We ran simulations of cold collapse of a set of N-particles in MOND
 N=1-2 x106 particles
 Initial conditions: clumpy, spherically symmetric Plummer distribution with particles at rest 
 We check energy, linear and angular momentum conservation 

 

(Nipoti, Londrillo & Ciotti in preparation)

Time evolution

Virial ratio ->

Kinetic energy (K) -> 

W=−∫x x ,∇d 3xInteraction energy (W) -> 

K+W ->

W is conserved in deep MOND.
This can be proved analytically   

(Nipoti et al. in prep).

 

Conservation of total 
energy K+W in Newtonian 

gravity

Virial Theorem holds in 
MOND 

(Gerhard & Spergel 1992)



APPLICATIONS: N-BODY SIMULATIONS IN MOND

End-products of  dissipationless collapse in MOND

  Newtonian collapses: R1/4 de Vaucouleurs profiles 
(see van Albada 1982) well reproduced by our code
                   

  MOND collapses produce systems with 
shallower inner cusps: 
Sersic  R1/m  profile with m=2-3

Density ->

Velocity dispersion ->

Anisotropy    
parameter ->

MOND end-products have 
flatter velocity dispersion 

profile and are more radially 
anisotropic than Newtonian 

end-products



SUMMARY & CONCLUSIONS

 We presented a flexible method to build analytical axisymmetric and triaxial MOND 
density-potential pairs with realistic density distributions
 We developed and tested a numerical MOND potential solver for generic density 

distributions
 We developed and tested a parallel particle-mesh code for MOND N-body simulations

NOTE: here we considered the  Bekenstein & Milgrom (1984) µ function but our 
numerical code works for all the proposed  µ functions for MOND and TeVeS

 The (often neglected) solenoidal field S is typically small in stationary systems, BUT in some 
(low-surface density) systems we found S/g up to 0.6
 Preliminary results of N-body simulations suggest that  the end-products of cold collapse in 

MOND differ structurally and kinematically from the end-products of Newtonian collapse

ANALYTICAL METHODS AND NUMERICAL CODES

APPLICATIONS AND FIRST RESULTS

WORK IN PROGRESS & FUTURE APPLICATIONS

 Vertical kinematics of disk galaxies in MOND  
 Constraints on  the  µ function from rotation curves 
 TeVes gravitational lensing from non-spherical lenses
 Stability of disks in MOND  
(Also in collaboration with P. Londrillo, L. Ciotti, H. Zhao  & B. Famaey)


