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THE MOND FIELD EQUATION
The non-linear MOND field equation

(Bekenstein & Milgrom 1984)

Vu IVl Vo|l=41Gp replaces the Poisson equation
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THE MOND FIELD EQUATION

The solenoidal field S=curl h

The MOND potential @ is related to the Newtonian potential @y by
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S=V xh is an unknown solenoidal field

Only in case of for spherical, cylindrical, planar symmetry S=0
=> IJVQI):V qu easy algebraic solution (Milgrom 1983 empirical formula)

In general S#0 and one has to solve the non-linear field equation
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Also for axisymmetric systems!!!

(Bekenstein & Milgrom 1984)



ANALYTICAL SOLUTIONS

An exception: the Kuzmin disk
(Brada & Milgrom 1995)

The razor-thin Kuzmin disk is the ONLY known axisymmetric

-

model for which $=0 because g, =[V¢, l=g,(¢,)

aM = kT .
R)= Kuzmin disk surface density
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@ The MOND potential of the Kuzmin disk is known analytically
@ Useful to test MOND out of spherical symmetry
@ BUT quite unrealistic as a galaxy model!

For instance, in deep MOND: b o R 2)=\GMa, In(R*+(|z]+a)*)""?

pKUZMIN<R’ z) (l)KUZMIN(R’ z)



ANALYTICAL SOLUTIONS

Analytical axisymmetric and triaxial
MOND density-potential pairs

(Ciotti, Londrillo & Nipoti 2006, Apj)

@ We propose a general method to build analytical axisymmetric and triaxial
density-potential pairs

@ (-to-p approach: deformation of a spherically symmetric solution

1) Choose a spherical density and compute the MOND potential:
po(r)=,(r)

2) Add an aspherical function to the potential and compute the corresponding density
using the MOND field equation:

b(r.0,@)=¢,(r)+A,(r,0.¢)=p(r,0,9)

3) If the density is everywhere positive (¢, p) is an aspherical MOND density-potential pair

FOR A SUITABLE CHOICE OF @; AND SMALL ENOUGH A A POSITIVE DENSITY IS FOUND



ANALYTICAL SOLUTIONS

An example: analytical axisymmetric and triaxial
Hernquist models in MOND

( M 1

p,(r)=

~ g 2T p(14r)

3 logp

) rcos” 9

3 ¢, (r,9)ox :
(r+1)

-10 -5 0 S 10 —7 — 0 1

X /1 log r/re
Isodensity contours Density profile

 Analytical density & potential

* General method

* Realistic density profile

* Significant flattening (0.6< b/a <1)

A numerical
potential solver

* Not highly flattened systems ic <till needed

(-)
* Density is not 100% under control (=)



NUMERICAL SOLUTIONS

A new numerical MOND potential solver
(Ciotti, Londrillo & Nipoti 2006, Apj)

® We developed a new numerical solver for the non-linear MOND field equation

@ Non-linear elliptic equations —> relaxation method -> Newton iterative method
@ Spherical coordinates grid (N¥,N,, N )

@ Spectral method in angular variables (spherical harmonics)

@ Finite differences in radial coordinate

@ The solver can be used in particle-mesh N-body codes (e.g. Londrillo & Messina 1990)

? Designed for finite-mass, single-peaked density distributions

> Literature: very little work on numerical solution of the MOND field equation
(Brada & Milgrom 1995, 1999: Cartesian coordinates + multigrid method)
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NUMERICAL SOLUTIONS
The numerical method

o = g™ 4 g™ \
NEWTON ITERATION

SN (59| = =11 o]

SM™ = V. [ WY 4y "“(g':“" : ?)] Exact operator:
- Quadratic convergence N0

M [@‘i"“-‘] —M [qﬁ':“-‘] — SAf) [-:'5@':"’] +0 [iéqﬁ‘“’}?_

- Inversion of a 3-D matrix required
- Numerical difficulties
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NUMERICAL SOLUTIONS

TESTING THE NEW NUMERICAL SOLVER

Comparison with non-spherical analytical solutions:

@ Kuzmin disk
@ Triaxial Hernquist models
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APPLICATIONS: ESTIMATING THE SOLENOIDAL FIELD

HOW IMPORTANT IS THE SOLENOIDAL FIELD S?
S=uVep-Vao,

We used the numerical solver to estimate the solenoidal field S in astrophysically relevant systems

@ S is typically small compared to the MOND acceleration g (§/g<0.1) (in agreement

with Brada & Milgrom 1995)
@ This is not always true: in deep MOND systems (e.g. low-surface density

axisymmetric Hernquist models) s/g is as high as 0.6 at the centre!
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APPLICATIONS: DISK VERTICAL FORCE: MOND vs DARK MATTER

VERTICAL FORCE IN DISK GALAXIES IN MOND AND DM

Preliminary results (Zhao, Nipoti, Londrillo & Ciotti in prep)

@ Given a the surface density of baryons in a disk galaxy MOND predicts the vertical force field
@ For the same galaxy, in a DM scenario the disk+(spherical)halo model reproducing the
rotation curve predicts a different vertical force field

@ Good measures of the vertical velocity dispersion of observed disk galaxis can discriminate
between the two scenarios

; ANALYTICAL SOLUTION
NUMERICAL SOLUTION Kuzmin disk: M=10'°Msun
Exponential disk: M=10'°Msun hg= 2.5kpc
hr= 3kpc, h,= 0.3 kpc

Midplane vertical velocity disp.

MOND
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R/kpc

Both MOND and disk+DM halo reproduce the same rotation curve
BUT MOND PREDICTS HIGHER VERTICAL VELOCITY DISPERSION
THAN DISK+DARK MATTER HALO NEWTONIAN GRAVITY

Application to observational data:
MILKY WAY (vertical vel disp. in the solar neighborhood) / other galaxies



APPLICATIONS: N-BODY SIMULATIONS IN MOND

N-body simulations in MOND

@ No Green function --> NO TREECODE, NO DIRECT N-BODY CODE
@ |nstead use —-> PARTICLE-MESH CODES
@ WE CANNOT NEGLECT THE SOLENOIDAL FIELD S
(even if S is typically small in stationary systems!)
@ WE MUST SOLVE EXACTLY THE FIELD EQUATION

If one neglects the solenoidal field S,
momentum is not conserved
(Felten 1984, Bekenstein & Milgrom 1984)

The ONLY MOND N-body
simulations so far were those by
Brada & Milgrom (1999, 2000).
Few applications: disk stability,
external field effect



APPLICATIONS: N-BODY SIMULATIONS IN MOND

A new particle-mesh MOND N-body code

(Londrillo, Nipoti & Ciotti in preparation)

@ We developed a new code to run N-body simulations in MOND

@ Standard particle-mesh technique used in Newtonian codes

@ The Poisson solver is replaced by our new MOND potential solver
@ Standard leap-frog time integration

@ The code is (partly) parallel

Density on grid

Particle->mesh

interpolation MOND

potential solver

Particles Bl

2

Mesh->particle
interpolation




APPLICATIONS: N-BODY SIMULATIONS IN MOND

Simulations of dissipationless collapse in MOND
(Nipoti, Londrillo & Ciotti in preparation)

@ We ran simulations of cold collapse of a set of N-particles in MOND

@ N=1-2 x10° particles

@ |nitial conditions: clumpy, spherically symmetric Plummer distribution with particles at rest
@ We check energy, linear and angular momentum conservation

Time evolution

Virial Theorem holds in
MOND

Virial ratio ->
iri I (Gerhard & Spergel 1992)

Kinetic energy (K) ->

Interaction energy (W) ->

K+W ->

W is conserved in deep MOND. Conservation of total
This can be proved analytically energy K+W in Newtonian
(Nipoti et al. in prep). gravity



APPLICATIONS: N-BODY SIMULATIONS IN MOND
End-products of dissipationless collapse in MOND

Newtonian collapses: R* de Vaucouleurs profiles
(see van Albada 1982) well reproduced by our code

MOND collapses produce systems with
shallower inner cusps:
Sersic RY™ profile with m=2-3
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MOND end-products have
flatter velocity dispersion
profile and are more radially
anisotropic than Newtonian
end-products

Velocity dispersion ->

Anisotropy
parameter ->




SUMMARY & CONCLUSIONS
ANALYTICAL METHODS AND NUMERICAL CODES

? We presented a flexible method to build analytical axisymmetric and triaxial MOND
density-potential pairs with realistic density distributions

@ We developed and tested a numerical MOND potential solver for generic density
distributions

@ We developed and tested a parallel particle-mesh code for MOND N-body simulations

APPLICATIONS AND FIRST RESULTS

@ The (often neglected) solenoidal field S is typically small in stationary systems, BUT in some
(low-surface density) systems we found S/g up to 0.6

@ Preliminary results of N-body simulations suggest that the end-products of cold collapse in
MOND differ structurally and kinematically from the end-products of Newtonian collapse

NOTE: here we considered the Bekenstein & Milgrom (1984) u function but our
numerical code works for all the proposed p functions for MOND and TeVeS

WORK IN PROGRESS & FUTURE APPLICATIONS

@ Vertical kinematics of disk galaxies in MOND
@ Constraints on the p function from rotation curves

@ TeVes gravitational lensing from non-spherical lenses
@ Stability of disks in MOND
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(Also in collaboration with P. Londrillo, L. Ciotti, H. Zhao & B. Famaey) e




