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AS5001(= SUPAAAA) 
ADA= “Advanced” (Astronomical) Data Analysis

Keith Horne       PandA 315A  kdh1@st-and.ac.uk
ADA web page: http://star-www.st-and.ac.uk/~kdh1/ada/ada.html

All lecture pdfs, homework, projects, videos on Moodle.

Supplementary Texts: 
Press et al. (CUP)  Numerical Recipes : The Art of Scientific Computing

(on the web at Numerical.Recipes)
Wall & Jenkins (CUP)  Practical Statistics for Astronomers
Gregory (CUP) Bayesian Logical Data Analysis for the Physical Sciences

Opinionated Lessons in Statistics, by Bill Press.   OpinionatedLessons.org
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ADA= “Advanced” (Astronomical) Data Analysis

Goal: Build concepts and skills for analysing quantitative data.

~15 Lectures: develop basic principles, illustrate with examples, 
extend step-by-step to build expertise for advanced analysis of 
datasets.

50%  2 Homework sets: test understanding, build skills
50%  2 Projects: analyse real datasets (Keck, HST)
NO EXAM   : )

Work steadily, ask questions, get help when you don’t understand,  
and you will succeed.
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ADA 01 - 10am Mon 12 Sep 2022 

Astronomical Data   +  Noise
Statistical vs Systematic errors

Probability distributions (pdf, cdf)
Mode, Mean, Median

Variance, standard deviation, MAD
Skewness, Kurtosis

Parameterised distributions 
(Uniform, Gaussian, Lorentzian, 

Poisson, Exponential, Chi^2)
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ADA Lecture 1 Outline

• Astronomical Data Sets
• Noise : 

• statistical vs systematic errors
• Probability distributions :

• Mean vs Median
• Variance (standard deviation) vs MAD
• Central moments (skewness, kurtosis)

• Survey of parameterised distributions
• Uniform, Gaussian, Lorentzian, Poisson, Exponential, Chi-squared
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Astronomical Datasets
• (Almost) all our information about the Universe arrives as 

photons. (neutrinos, gravitational waves)
• Photon properties:

• Astronomical datasets are (usually) photon distributions 
confined by a detector to (some subset of) these properties:

Di = ∫ Pi (
!
x,t,α,δ ,λ, !p) f ( !x,t,α,δ ,λ, !p) d( !x,t,α,δ ,λ, !p) + Noisei

Photon detection 
probability for data 
point i

Photon 
distribution

  

€ 

position :     
 
x 

time :           t

direction :   α,δ

energy :          E = hν = hc /λ

polarisation :   (Stokes parameters, 
 
p = I,Q,U,V)         
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Astronomical Datasets
• Direct imaging: 

– size
– structure

• Astrometry: 
– distance
– parallax
– motion
– proper motion
– visual binary orbits

€ 

D(α,δ)

€ 

D(α,δ,t)
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• Black Hole in the Galactic Centre
• Star orbits traced to find
MBH  = (4.0 +/- 0.2 ) x 106 M¤

Black Hole Mass from Stellar Orbits

Boehle, Ghez et al (2016) ApJ

~5% accuracy

Distance from Earth
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Astronomical 
Datasets

• Light curves:
– Time variations
– Orbital periods 

• Spectra:
– Physical conditions
– Temperature, density
– Velocities => masses 

€ 

D(t)

€ 

D(λ)

8

Integral-field Spectroscopy:        
• Close-packed array of 

fibres (or lenslets) giving 
spectra over a grid of 
positions on the sky. 

• Probes spatial and 
spectral structure 
simultaneously.

€ 

D(α,δ,λ)
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Interferometry:
• An example of

Indirect Imaging

• Use information about 
arrival time at 
different locations to 
infer angular structure 
of source.

• Picture: 6 cm radio 
map of “mini-spiral”
of gas around Sgr A* 
(=black hole at the 
centre of our Milky 
Way galaxy).

D(

x, t)⇒ I(α,δ)
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Black Hole in M87
imaged by the Event Horizon Telescope

• Event Horizon Telescope image of Black Hole in M87 

• Rs = 270 AU
• MBH  = (6.5 +/- 0.7 ) x 109 M¤

42 µas

EHT collaboration (2019)
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Data are Data

There are many different types of data.
Photon properties define the dimensions of 
(most) astronomical datasets.

But: The same analysis techniques apply             
to all quantitative datasets.

(Astronomical or otherwise.)
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Data are affected by Noise
• Repetitions of the same experiment 

or observation give different results. 
• e.g. spectral-line profile:

• Sources of noise:
• Quantum (Poisson) noise 

– finite number of photons

• Thermal noise
– thermal fluctuations in the detector/electronics  

• Rare events
– cosmic ray hits, instrument failures
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• Consider an ensemble of repeated 
measurements.

• Data values “dance” around.

• Statistical errors:
– From random nature of measurement 

process.
– Can be reduced by averaging repeat 

measurements.

• Systematic errors (bias): 
– Due to flawed measurement technique.
– Bias remains after averaging repeat 

measurements. 

• Probability distributions describe    
this “dance” of the data values.

Data Values as “Random Variables”
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Probability Distributions  (PDFs)
• Probability distribution f(x)
• aka: probability density function (pdf)
• defines the probability that x lies in 

some range:

• Probabilities add up to 1.
• If x can take any value 

between -¥ and +¥ then

P(a < x ≤ b) ≡ f (x)
a

b

∫ dx

f(x)

xa b

€ 

f (x)
−∞

∞

∫ dx =1
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• Integrating f(x) gives the 
cumulative probability 
F(a) that x ≤ a:

Cumulative Probability Functions (CDFs) 

F(a) ≡ P(x ≤ a) ≡ f (x)
−∞

a

∫ dx

F(−∞) = 0 F(+∞) =1

P(a < x ≤ b) = f (x)
a

b

∫ dx

                   = F(b)−F(a)

f(x)

xa

F(x)

xa
0

1

b
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Discrete Probability Distributions
• Example: 

– Exam marks
– Photons per pixel

Histogram
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f (x) ≡ pi
i
∑ δ(x − xi )

F(x) ≡ pi
i
∑ for all xi ≤ x
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Uniform Distribution   U(a,b)
• Also known as a “boxcar” or “tophat” distribution:

f (x) =
1

b − a
  for a < x < b

f (x) = 0         otherwise.

x

U(a,b)

a b

18
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19 20

Note that the histograms converge to f(x) and F(x).

21 22
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Note that the histograms converge to f(x) and F(x).

24
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Moments of Distributions

• The moments of a distribution characterise its 
location, width and shape.

• Strong physical analogy with moments in 
mechanics of rigid bodies:

– Centre of mass    = first moment
– Moment of inertia = second (central) moment
– Higher moments  => info on the shape of the distribution
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Location measures:  Mode, Mean and Median
• Mode (highest probability density)
• Mean (centre of mass)
= probability-weighted average of x

• Median (50th percentile)

x ≡ f (x) x∫ dx

f(x)

x

< x >

F(x)

xxmed
0

1

1/2

F(x
med
) ≡
1

2

P(x < x
med
) = P(x > x

med
)
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Mean vs Median 
• Median is less sensitive to the long wings of a 

distribution -- the outliers.

€ 

x

€ 

x
med
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Width Measures:  Standard Deviation, MAD
• Standard deviation s measures 

width of distribution.

• Variance s2 (moment of inertia)

Mean Absolute Deviation  (MAD):

σ 2 (x)=σ 2
x = Var(x) ≡ [x − x ]2

= f (x)∫ [x − x ]2 dx

f(x)

x

< x >

-s +s

MAD ≡ x − xmed
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Shape :  Higher-order (Central) Moments

• General form:

• Skewness ( m3 ) :
(asymmetric tails)

• Kurtosis ( m4 ) :

€ 

m
n
≡

x − x

σ

 

 
 

 

 
 

n

If you know all the moments, 
you know the full shape.

( n th central moment 
in units of s n )

m1 = ?
m2 = ?

f(x)

x

Peaky with long tails

Boxy with short tails

f(x)

x

Higher central moments 
n = 3, 4, … define the 
shape of the distribution.  Which has m3 > 0 ?

Which has 
larger m4 ?
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Skew  and Kurtosis

( m3 > 0 )( m3 < 0 )

( x – µ ) / s

m4 > 3 increases peak and 
wings relative to a Gaussian

“Leptokurtic”
( m4 > 3 ) with 
longer tails, like a 
kangaroo (leaps)

“Mesokurtic”
( m4 = 3 ) like a 
Gaussian.

“Platykurtic”
( m4 < 3 ) with 
shorter tails, like a 
platypus.

Excess Kurtosis ( m4 - 3 ) 
defined relative to the 
kurtosis of a Gaussian.
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Gaussian Distribution G( µ, s2 )
• Also known as a Normal distribution.    N( µ, s2 ) 
• Physical example: thermal Doppler broadening

• 2 parameters:
• Mean (expected) value:
• E( x ) = < x > = µ
• Variance:    Var( x ) =  s2(x) = s2
• Standard deviation (dispersion)   s
• Full width at half maximum (FWHM)

• 32% probability that x is outside µ± s
• 4.5% for x outside µ± 2 s
• 0.3% for x outside µ± 3 s

€ 

f (x) =
1

2π σ
e
−
1

2

x−µ

σ

 

 
 

 

 
 

2

€ 

FWHM = 8ln2σ ≈ 2.3σ

f(x)

x

µ

µ-s µ+s
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Lorentzian (Cauchy) Distribution L(µ,s)
• Peak at x = µ,  HWHM = s.
• Physical example: damping 

wings of spectral lines.

• Pathological: wings so broad that all moments diverge!  L

€ 

f (x) =
σ

π

1

σ 2 + (x −µ)2

F(x) =
1

π
tan

−1 x −µ

σ

 

 
 

 

 
 +
1

2

x ≡
σ
π

xdx
σ 2 + (x −µ)2−∞

∞

∫ ∝ ln(1+ x2 )
−∞

∞
=∞−∞

(x −µ)2 =∞
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Poisson Distribution P(l)
• A discrete distribution
• Describes counting statistics:

– Raindrops in bucket per time interval
– Photons per pixel during exposure

• l = mean count rate
– Not necessarily an integer !
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∞

∑

P(x = n) = e−λ λ
n

n!
   n = 0,1, 2,...

x = λ

σ 2 (x) = λ⇒σ (x) = x

1 3

5 7

9

1
1

S1

S3
0

0.1

0.2

0.3

0.4P

1
24

8

lx

35

0

0.5

1

0 1 2 3

x / τ

f
(
x
)

0

0.5

1

0 1 2 3

x / τ

F
(
x
)

Exponential Distribution  E(t)
• Distribution of time intervals between random events

– Raindrops, photons, radioactive decays, lightbulbs burning out, etc.

f (x) =
1

τ
e
−x/τ

F(x) =1− e
−x/τ

x = τ =  mean time between events

Var x[ ] = (x −τ )
2
= τ 2
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Chi-Squared Distribution    c2N

• Sum of squares of  N independent Gaussian random variables

χN
2 ≡    Chi-Squared with N  degrees of freedom

X   and Y  are independent Gaussian random variables.
i.e.       X ~G(0,1)           Y ~G(0,1)
then    X 2 ~ χ1

2                Y 2 ~ χ1
2

   X 2 +Y 2 ~ χ2
2

and so on for each new 
degree of freedom:
  χN

2 + χM
2 ~ χN+M

2

   

X

Y
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Chi-Squared = “Badness of Fit”

€ 

χ 2 ≡
D
i
−µ

i
(α)

σ
i

 

 
 

 

 
 

2

i=1

N

∑ ~ χ
N−P
2

D
i
= data value

σ
i
=1-σ error bar 

µ
i
(α) = model predicted data value

α = parameters of the model

N = number of data points

P = number of fitted parameters

N − P = degrees of freedom
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c2 distribution with         
N degrees of freedom

€ 

      χ
N

2 = N    

  σ 2 χ
N

2( ) = 2N  

€ 

f (x) =
1

Γ(N /2) 2
N / 2

x
(N / 2−1)

e
−x / 2

Γ(1) =1 Γ(1 / 2) = π

Γ(n) = (n−1)! Γ(x +1) = x Γ(x)

e.g. Γ(3 / 2) = (1 / 2) Γ(1 / 2) = π / 2

€ 

χ
1

2
: f (x) =

e
−x

2 π x

 

 
 

 

 
 

1/ 2

χ
2

2
: f (x) =

1

2
e
−x / 2
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c2
N and reduced c2

N  distribution
• Sum of squares of  N independent Gaussian random variables

χN
2 = chi− squared                          Reduced χN

2

with N  degrees of freedom

χN
2 = N                                            χN

2

N
=1

σ 2 χN
2( ) = 2N                                   σ 2 χN

2

N
"

#
$

%

&
'=

2
N

σ χN
2( ) = 2N                                   σ χN

2

N
"
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2
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