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Eyeballing sigma (5-sigma rule)

Joint Probability Distributions
Independence vs Correlation

Algebra of Random Variables:
Linear Transformations

Covariance Matrix
Correlation Coefficient / Matrix



Eyeballing Sigma

How well can you 
estimate the noise 
standard deviation, s, 
just by looking at a plot 
of the data ?



Eyeballing 
Sigma

1.    If lots of data points:     
The 5-sigma rule:

Estimate “by eye” the range 
(max-min) of the data 
(~100 data points).

That range (max-min) is about 
5-sigma

Usually good to 20% by eye.

2. If only a few data points: 
~2/3 of the data points should 

be inside +/- 1 sigma



Multivariate Distributions
• Suppose we measure 2 (or more) different properties

– e.g. rotational and radial velocities of stars in a cluster
– colours and magnitudes of stars in a cluster 
– redshifts and peak apparent magnitudes of distant supernovae

• Does knowing the value of one random variable X 
inform you about the other?
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Joint Probability Distribution   f( X, Y )
• X and Y are two random variables.
• Their joint probability distribution is f( X, Y )
• Normalisation:

• Projection gives f(X), f(Y) :

€ 

f (X,Y ) dX dY =1∫∫

f (Y ) = f (X,Y) dX∫

f (X) = f (X,Y) dY∫
Y

X

f(X)

f(Y)



Independence  vs Correlation
• Independent variables: 

– knowing X does not inform about Y
– Definition:

• Partially correlated: 
– knowing X tells you something about Y

• Perfect correlation:
– X determines Y

f (X,Y) = f (X) f (Y)
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The Algebra of Random Variables

Random variables are  “fuzzy” numbers.

1  +  1  =  2

€ 

1±1( ) + 1± 2( ) = ? ± ?( )

Ordinary numbers are  “sharp”.

How do the mean and variance change when we 
add or subtract or multiply fuzzy numbers?

How do the higher moments change?

µ ±σ( ) is a shorthand notation giving the mean µ and 
standard deviation s of a random variable.



Linear Transformations: Scaling
Constants:

Scaling a random variable, X, by a constant, a :
– Mean:

– Variance:

a X = a X f (X )∫ dX

= a X f (X )∫ dX = a X

€ 

Var(a X) = [a X − a X ]
2

              = [a X − a X ]
2

              = a
2
[X − X ]

2

              = a
2
Var(X)

€ 

a X = a X

Var(a X ) = a2 Var(X )
   σ a X( ) =| a |σ X( )

€ 

a   =   ?         Var a( )  =   ?

“Stretch the paper” by a factor a.
Location µ and width s then increase by factor a.



Linear Transformations: Addition
• Adding two random variables X and Y :

• True for any joint PDF!

X +Y ≡ (X +Y ) f (X ,Y )∫∫ dX dY

= X f (X ,Y )∫∫ dX dY + Y f (X ,Y )∫∫ dX dY

= X f (X ,Y )∫ dY⎡
⎣

⎤
⎦∫ dX + Y f (X ,Y )∫ dX⎡

⎣
⎤
⎦∫ dY

= X f (X )∫ dX + Y f (Y )∫ dY

≡ X + Y

€ 

X +Y = X + Y



Why it works...
• Centre of mass is a well-defined position. 

€ 

X +Y = X + Y< X >

X

<Y>

Y

X + Y = constant

<Y>



Variance and Co-variance
• Variance of X+Y depends on how X and Y co-vary:

Var(X +Y ) ≡ [X +Y − X +Y ]2

= [X +Y − X − Y ]2

= [(X − X )+ (Y − Y )]2

= (X − X )2 + (Y − Y )2 + 2(X − X )(Y − Y )

= (X − X )2 + (Y − Y )2 + 2 (X − X )(Y − Y )

= Var(X) + Var(Y ) + 2Cov(X,Y )

Var(X +Y ) = Var(X)+Var(Y )+ 2Cov(X,Y )

  Cov(X,Y ) ≡ (X − X )(Y − Y )



Co-variance vs Independence
• Cov > 0

• Cov < 0

• Cov = ?

Independent?

• Cov = ?



Practice !

€ 

X =1±1

Y =1±1

X +Y = ? ± ?

€ 

X =1±1

Y = X

X +Y = ? ± ?
€ 

X =1±1

Y = 2 − X

X +Y = ? ± ?

X =1±1 Y = 2±1 Cov[X,Y ]= 0 a = 2 b =1
Z = aX + bY Z = ? Var Z( ) = ?



Linear Transformations
• Scale and add any number of  random variables:

Or, in terms of the (symmetric) Co-variance Matrix:
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Correlation Coefficient  R( X, Y )
• Correlation coefficient:

• Correlation matrix:

• Variance:

€ 

Rij ≡
Cov(Xi,X j )

σ (Xi)σ(X j )
=

1 . . .
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 = ai

j

∑
i

∑ a jσ Xi( )σ X j( )Rij

€ 

R(X,Y ) ≡
Cov(X,Y )

σ(X)σ (Y )

R = 0R = -1 R = +1
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Example:  Correlation Matrix

An 11-parameter 
model fitted to data.

This matrix shows 
the correlations 
present among the 
11 parameters.
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