ADA03 - 9am Thu 15 Sep 2022

Brief Review Spurious Correlations Correlation vs Causation

Non-Linear Transformations Bias corrections

Transforming random numbers
Uniform -> Lorentzian
Uniform -> Gaussian

Review: Correlation vs Independence

- $\mathrm{R}>\mathbf{0}$
- $\mathrm{R}=0$
- $R<0$

Dependent :

Independent :

$$
f(X, Y)=f(X) f(Y)
$$

Example of a Spurious Correlation

Age of Miss America
correlates with

Murders by steam, hot vapours and hot objects

1: Beware Spurious Correlations

- Two variables may appear to be strongly correlated.
- But, can be spurious if you look at many variables, to find the strongest correlations, then pretend you only looked at those.

2 : Correlation is not Causation

- Correlation of 2 variables does not mean that one causes the other. Both could be side effects of something else.

Misleading Significance Claims

If we look at 100 points, we typically find 2 that are 5-sigma apart.

If we pull out those 2
(and omit the others)
we can't honestly claim to have a 5-sigma result.
estimating σ

The 5- σ Rule:

Review: Algebra of Random Variables

$$
\begin{aligned}
\langle a\rangle & =a & \operatorname{Var}[a] & =0 \\
\langle a X\rangle & =a\langle X\rangle & \operatorname{Var}[a X] & =a^{2} \operatorname{Var}[X] \\
\langle X+Y\rangle & =\langle X\rangle+\langle Y\rangle & \operatorname{Var}[X+Y] & =\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y]
\end{aligned}
$$

Co-variance :
$\operatorname{Cov}[X, Y] \equiv\langle(X-\langle X\rangle)(Y-\langle Y\rangle)\rangle \quad \operatorname{Var}[X] \equiv \operatorname{Cov}[X, X]$
Linear transformations :
$\left\langle\sum_{i} a_{i} X_{i}\right\rangle=\sum_{i} a_{i}\left\langle X_{i}\right\rangle \quad \operatorname{Var}\left[\sum_{i} a_{i} X_{i}\right]=\sum_{i} \sum_{j} a_{i} a_{j} \sigma_{i} \sigma_{j} R_{i j}$
Correlation Matrix :
$R_{i j} \equiv \frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\sigma_{\mathrm{i}} \sigma_{\mathrm{j}}} \quad \sigma_{\mathrm{i}} \equiv \sigma\left(X_{i}\right)$

Practice the "fuzzy" algebra of random variables

$$
6(1 \pm 1)=
$$

$$
(1 \pm 1)+(2 \pm 2)=
$$

$$
(1 \pm 2)-(2 \pm 2)=
$$

Practice until this becomes automatic ...

Functions of Random Variables

Often what we can measure is not what we are most interested in! Example: mass of binary-star system:

$$
M=\frac{V^{2} a}{G}=\frac{V^{3} P}{2 \pi G}
$$

We want M, but can only measure V and P. $P=$ accurate, but V usually less certain. What is the uncertainty in M ?

For power-laws: $\quad \ln M=3 \ln V+\ln P+$ const. $\quad \sigma(\ln x) \approx \sigma(x) /\langle x\rangle$

$$
\left(\frac{\sigma_{M}}{\langle M\rangle}\right)^{2} \approx\left(3 \frac{\sigma_{V}}{\langle V\rangle}\right)^{2}+\left(\frac{\sigma_{P}}{\langle P\rangle}\right)^{2}
$$

(valid for small and independent errors in V and P).
How do error bars propagate through non-linear functions?

Functions of a Random Variable

$$
Y=y(X) \quad \frac{d Y}{d X}=y^{\prime}(X)
$$

Conserve probability:

$$
\begin{aligned}
& d(\text { Prob })=f(Y)|\mathrm{d} Y|=f(X)|\mathrm{d} X| \\
& f(Y)=f(X)\left|\frac{d X}{d Y}\right|=\frac{f(X)}{\left|y^{\prime}(X)\right|} \\
& \text { mean value } \quad \text { (biased) }
\end{aligned}
$$

$$
\langle Y\rangle=y(\langle X\rangle)+\frac{1}{2} y^{\prime \prime}(\langle X\rangle) \sigma_{X}^{2}+
$$

standard deviation (stretched)

$$
\sigma_{Y}=\sigma_{X}\left|\frac{d y}{d x}\right|_{X=\langle X\rangle}+\ldots
$$

Negative curvature:
Long tail for $Y<y(<X>)$
Bias: $<Y><y(<X>)$.

Median is not biased:
$\operatorname{Med}(Y)=y(\operatorname{Med}(X))$

Examples of Non-linear Transformations

Spectral Energy Distributions: per unit wavelength (erg cm ${ }^{-2} \mathrm{~s}^{-1} \mathrm{~A}^{-1}$),

$$
\begin{aligned}
& f_{v}(\lambda)|\mathrm{d} v|=f_{\lambda}(\lambda)|\mathrm{d} \lambda| \\
& v=\frac{c}{\lambda} \quad \mathrm{~d} v=-\frac{c}{\lambda^{2}} \mathrm{~d} \lambda \quad \Rightarrow f_{v}(\lambda)=\left|\frac{\mathrm{d} \lambda}{\mathrm{~d} v}\right| f_{\lambda}(\lambda)=\frac{\lambda^{2}}{c} f_{\lambda}(\lambda)
\end{aligned}
$$

Converting a flux to a magnitude:

- Measure Flux: Gaussian distribution: $\left.f \sim G(<f\rangle, \sigma_{f}^{2}\right)$
- Nonlinear transformation induces a bias:

$$
\begin{aligned}
m & =m_{0}-2.5 \log f \\
\langle m\rangle & =m_{0}-2.5 \log \langle f\rangle+a \sigma_{m}^{2}
\end{aligned}
$$

- PROBLEM: evaluate a, σ_{m} in terms of $\left.<f\right\rangle, \sigma_{f}$.

Nonlinear Transformations: A Bias from Curvature + Noise

Taylor expand $Y=y(X)$ around $X=\langle X>$:

$$
\begin{gathered}
y(X)=y(\langle X\rangle)+y^{\prime}(\langle X\rangle) \varepsilon+\frac{1}{2} y^{\prime \prime}(\langle X\rangle) \varepsilon^{2}+\ldots \\
\text { where } \quad \varepsilon \equiv X-\langle X\rangle, \quad\langle\varepsilon\rangle=0, \quad\left\langle\varepsilon^{2}\right\rangle=\sigma_{X}^{2} .
\end{gathered}
$$

Hence (using the algebra of random variables):

$$
\begin{aligned}
\langle y(X)\rangle & =\left\langle y(\langle X\rangle)+y^{\prime}(\langle X\rangle) \varepsilon+\frac{1}{2} y^{\prime \prime}(\langle X\rangle) \varepsilon^{2}+\ldots\right\rangle \\
& =y(\langle X\rangle)+y^{\prime}(\langle X\rangle)\langle\varepsilon\rangle+\frac{1}{2} y^{\prime \prime}(\langle X\rangle)\left\langle\varepsilon^{2}\right\rangle+\ldots \\
& =y(\langle X\rangle)+\quad 0 \quad+\frac{1}{2} y^{\prime \prime}(\langle X\rangle) \sigma_{X}^{2}+\ldots
\end{aligned}
$$

This is the bias.

Variance of a Transformed Variable

$$
\sigma^{2}(Y) \equiv\left\langle(Y-\langle Y\rangle)^{2}\right\rangle=\left\langle\left[y(\langle X\rangle)+y^{\prime}(\langle X\rangle) \varepsilon+\frac{1}{2} y^{\prime \prime}(\langle X\rangle) \varepsilon^{2}+\ldots\right.\right.
$$

$$
\left.\left.-y(\langle X\rangle)-0-\frac{1}{2} y^{\prime \prime}(\langle X\rangle) \sigma^{2}(X)-\ldots\right]^{2}\right\rangle
$$

Using the algebra of random variables:

$$
=\left\langle\left[y^{\prime}(\langle X\rangle) \varepsilon+O\left(\varepsilon^{2}\right)\right]^{2}\right\rangle=\left[y^{\prime}(\langle X\rangle)\right]^{2} \sigma_{X}^{2}+\ldots
$$

Could extend to higher-order terms (skew, kurtosis) if needed, but fast computers make it easier to use Monte-Carlo error propagation.

Example: Magnitude Bias

Observe flux: $\quad f=\left(f_{0} \pm \sigma_{f}\right)$
Convert to a magnitude: $\quad m(f) \equiv m_{0}-2.5 \log f=m_{0}-(2.5 \log e) \ln f$
Derivatives: $(\log f=\log e \ln f) \quad m^{\prime}(f)=-\frac{2.5 \log e}{f}, \quad m^{\prime \prime}(f)=\frac{2.5 \log e}{f^{2}}$.

$$
\sigma_{m} \approx\left|m^{\prime}\left(f_{0}\right)\right| \sigma_{f}=\frac{2.5 \log e}{f_{0}} \sigma_{f} \approx 1.08 \frac{\sigma_{f}}{f_{0}} .
$$

$$
\langle m\rangle=m\left(f_{0}\right)+\frac{m^{\prime \prime}\left(f_{0}\right)}{2} \sigma_{f}^{2}+\ldots
$$

$$
=m_{0}-2.5 \log \left(f_{0}\right)+\frac{2.5 \log e}{2 f_{0}^{2}} \sigma_{f}^{2}
$$

$$
=m_{0}-2.5 \log \left(f_{0}\right)+\frac{\sigma_{m}^{2}}{5 \log e}
$$

Note the bias toward faint magnitudes.

Example : Magnitude Bias

converting noisy fluxes to magnitudes:
$f=f_{0} \pm \sigma_{f} \quad m(f) \equiv m_{0}-2.5 \log f$
$\sigma_{m}=(2.5 \log e) \frac{\sigma_{f}}{f_{0}} \approx 1.08 \frac{\sigma_{f}}{f_{0}}$.
$\langle m\rangle=m\left(f_{0}\right)+$ bias
bias $=\frac{\sigma_{m}^{2}}{5 \log e} \approx 0.01\left(\frac{\sigma_{m}}{0.15}\right)^{2}$
15% uncertainty $->1 \%$ bias
50% uncertainty $->10 \%$ bias

Given noisy fluxes, you could first average the fluxes and then compute the magnitude:

$$
m(\langle f\rangle)=m_{0}-2.5 \log \langle f\rangle
$$

or, first convert each flux to a magnitude and then average the magnitudes:

$$
\langle m(f)\rangle=\left\langle m_{0}-2.5 \log f\right\rangle
$$

Which method gives the smaller bias ?

Example: Distance from Parallax measurements

Parallax is the apparent motion of stars
 as the Earth orbits the Sun.

$$
\frac{d}{\text { parsec }}=\left(\frac{p}{\operatorname{arcsec}}\right)^{-1}
$$

Measure a parallax, with Gaussian error,

$$
p=p_{0} \pm \sigma_{p}
$$

Estimate the distance and its uncertainty:

$$
d=\frac{1}{p_{0}}+b i a s \pm \sigma_{d}
$$

Include a correction for the bias due to the non-linear transformation.

Example : Cartesian -> Polar coordinates e.g. Amplitude and Phase

Independent measurements of C and S
(e.g. cos and sin amplitudes of an oscillation):
$S=A \sin \theta \sim\left(S_{0} \pm \sigma_{S}\right)$
$C=A \cos \theta \sim\left(C_{0} \pm \sigma_{C}\right)$
Transform to amplitude and phase:

$A=? \pm$? $\quad \theta=? \pm$?

How to Transform Random Numbers

$$
\begin{array}{cl}
\text { Uniform } & \rightarrow \text { Lorentzian } \\
u \sim U(0,1) & \rightarrow x \sim L(\mu, \sigma)
\end{array}
$$

$u=F(x)=\frac{1}{\pi} \arctan \left[\frac{x-\mu}{\sigma}\right]+\frac{1}{2}$
$x=F^{-1}(u)=\mu+\sigma \tan \left[\pi\left(u-\frac{1}{2}\right)\right]$

Practice:
$\begin{array}{lll}\text { Uniform } & \rightarrow & \text { Exponential } \\ \text { Uniform } & \rightarrow & \text { Power-law }\end{array}$

Box-Muller Transform

For Gaussians, cumulative probability $F(x)$ has no analytic expression. : Harder to generate Gaussian random numbers $x=F^{-1}(u)$ from Uniform random numbers u.

Two independent uniform random numbers:

$$
x \sim U(-1,+1) \quad y \sim U(-1,+1)
$$

Keep if $\quad r^{2}=x^{2}+y^{2}<1$ and $r>0$.
Two independent gaussian random numbers:

$$
\begin{aligned}
G_{1} & =\frac{2 x}{r}(-\ln r)^{1 / 2} \quad G_{2}=\frac{2 y}{r}(-\ln r)^{1 / 2} \\
r & =0 \rightarrow G=\infty
\end{aligned}
$$

$$
r=1 \quad \rightarrow \quad G=0
$$

G_{1} and G_{2} have mean 0 and variance 1:

$$
G_{1} \sim G(0,1) \quad G_{2} \sim G(0,1)
$$

Fini -- ADA 03

