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Vector Space Perspective
Data Space Metric
FITEXY : data with errors in both X and Y

Error Bars in both Xand Y

Wrong ways to fit a line :
1. yx)=ax+b (0,=0)
2. x(y)=cy+d (o,=0)

3. split difference between 1 and 2.

Example: Primordial He abundance:
Extrapolate fit lineto [O/H]=0.

[He/H]

Correct method is to minimise : I
& (Y, -(a X, +b))
2(a,b) = ('7‘ [O/H]
x @h) gaz(y,mzaz(xi)
Let’s see why.
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Vector Space Perspective

N data points, M parameters. (M < N)

Model u(a)defines a parameterised
M-dimensional surface in the
N-dimensional data space.

With the “data-space metric” (distance
in sigma units along each axis in data
space), then

For linear models (scaling
patterns), the model surface is a
flat M-dimensional hyper-plane.

() = squared distance from the
observed data to the model surface.

Best-fit model is the one closest to the

Review: Vector Spaces

Vectors have a direction and a length.
Addition of vectors gives another vector.
Scaling a vector stretches its length.
Dot product:

a*b=|a||b|cos

0= "angle" between vectors a, b.

=a*a

“Length” of a vector: ‘ a ‘2
(=distance from base to tip)

“Distance” between 2 vectors: la—-bl

data.
Ortho-normal Basis Vectors Data Space is a Vector Space
. N data points define a vector in N-dimensional “data space”:
Ortho-normal basis vectors e; : e3
L o X ={x; XX}
i=
g,-g,=6,j={ i j, e =X € +X, e+ X, ey
0 i=j
) . L ) N basis vectors: e, ={1.0,....0}
Any vector a is a linear combination of the N basis &1 ST o X
vectors e;, with scale factors a; e, ={0.1,...,0}
Example: N <
' a-Jae=3(ae)e ey =001}
v i=1 i=1 e
x=a.ex=4 - Basis is ortho-normal if:  €;*€; = 5,/ & Xi
3 a
2 |- + Basis vector g selects data point xi: X *e; = X,
y=a.8=3
LN + Data point xi is the projection of data vector x along the basis vector g;.
& I ! I
el 2 3 4 x
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Non-orthogonal Basis Vectors ,,

In the non-orthogonal case, e *e,=cosf@=0

Two ways to measure coordinates: e
- Contravariant coordinates (index high):
X' project parallel to basis vectors: & X X1

xl
xZ

x=x'e +x’e,+..+x"ey L
) X, =X +x cosf
- Covariant coordinates (index low): 1

xjproject perpendicular to basis vectors.

x’:Efgijxj { X }=[ 1 cosf }

cosf 1

X, =x"+x'cosf

-+ Metric tensor: 8i; =€ ¢, Xy

Dot product:
=yx e e, =Yy g =Yy =y xy
LJ ij i J

Metric for non-orthonormal Basis Vectors

g, =¢°¢; ‘el‘ ‘91”92‘70053
i) = ¢ ‘e]Hez‘COSH e,

Metric is symmetric: gij=gji .
Off-diagonal terms vanish if the basis vectors are orthogonal.
Diagonal terms define the lengths of the basis vectors.
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Data sets and Functions as Vector Spaces

« Adataset, X, i=1, ..., N,is also an N-component vector
( X1, Xz, ..., Xn ), one dimension for each data point.

« The data vector is a single point in the N-dimensional
data space.

« Afunction, f(t), is a vector in an infinite-dimensional
vector space, one dimension for each value of .

« The “dot product” between 2 functions depends on a
weighting function w(t):

(f.8)= [ F(0) gywo) dr

Each weighting function w(t)
gives a different dot product,
a different distance measure,

a different vector space.
Which w(t) to use
for data analysis?

x2 as (distance)? in function space
+ The (absolute value)? of a function f(t ) :
|£I =(f.0)= [ F@ywaey dr
+ The (distance)? between f(t )and g(t) :
| £-2lf =(f-2.f-2)= [(f)-g) w(r) dt
+ Adataset ( Xi+/- o) at t = t; defines a specific weightin%function:
Wit = E ot - t)

O;

+ With this w('t ), the (dlstance)2 from data X( t)to model y(t)is y2:

N
‘X ‘u‘ E X ’u(t ) XZ- Each dataset defines its
P o; own weighting function.
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The Data-Space Metric: Optimal Scaling in Vector Space Notation
ois the unit of distance. #?is (distance)? o )
) . + Minimise %2 -> pick model closest to the data.
« Define the data-space dot product with
inverse-variance weights: + Scaling a pattern: E( a)=aP :
N N . = (a) aP
1 b b a, b, My
wis g T a%h= E“' Wi = E o + The pattern P is a vector in data space.
i i=1 i=1 i
v 2 + The model o P is a line in data space, multiples of P_.
la-b|*= 2 (”' _b‘) . + The best fit is the point along the line closest to the data X
i=1 O;
. YXPlo} X
- Then, the (distance)? between data x a= 72 P2/0° PP
and parameterised model p(c) is: ro
u(d)—&P—(X'B -
NP 2 ==\ per )
X E( u,(a)) -|X- @l R A
! * Unit vector along P : e, == x©es0 ak
- ‘E‘ a=-1
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Stretching the Basis Vectors

Using the vector notation,
EE X' Plg, E X' P'/o?
_7_EEP'P/g,,_ (P /o e ={10.....0}

={0.1,...,0}
So the ei basis vectors are orthogonal but not unit length, glven
the data-space metric
8i;=¢i°¢; =30, ey ={0.0....1}
i.e. oiis the natural unit of distance on the iin axis of data space!
We can “stretch” basis vectors i by factor or
to define a new set of ortho-normal basis vectors b; : b, ={0,0....0}
bi =o,¢ Di .h]_ _ 6[_ ) b, ={0,0,,...,0}
J

by ={00.....0y}

Stretch basis vectors
to make j?ellipses become circles

%% contours

. . X2
Old basis vectors: are ellipses
9,
=e; %€

Orthogonal, but not normalised. e X1
“Stretched” basis vectors are orthonormal:

be X2 /o2 % contours
" are circles

N,
X
x=2<x b,)b; =E;’h, b xi /a1
i=1 i=1
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Error Bars in both X and Y

Wrong ways to fit a line :

1. yx)=ax+b (o0,=0)

2. x(y)=cy+d (0,=0)

3. split difference between 1 and 2.

Line Fit with error bars in both Xand Y

Horizontal stretch by factor oy / ox
makes the probability cloud round.

Model:  y=ax+b Also changes the slope: a=>a’

Data: X+o, Y=xo,

““““ y=a'x'+b

Circle radius is Oy = O’

Ay

. i ; . [He/H] Ay=Y -(aX+b)
Example: Primordial He abundance: Ax=X-(Y-b)/a e v Aoy %t
oy AX' o,
Extrapolate fit lineto [O/H]=0. For ox# ov, where is the point Closest approach at - R = Ay cos€
of closest approach ? ( R ): cos?0 1 o2
R _ _ _ Y
) .2 cin2 an 2 2 2 2
Key concept: X +/-oxand Y +/- oy [O/H] Ay) cos’@+sin’0 l+tan’6 oy +a’oy
are 2 independent dimensions of Not obvious. ® RY (& RY_ A
the 2N-dimensional data space. o,) \o,&y) oi+dol
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Defining #? for errors in both X and Y
Horizontal stretch makes probability cloud round.
Circle radius is oy = Ox’ .
Distance R at closest approachis: |  @-——f-——--— y=a'x"+b
2
&
| T = 2 2 -
Oy Oy +a Oy Circle radius is Oy = Ox’ Flnl - ADA 1 0
Note: Need a different stretch for each data point.
Total (distance)? in the 2 N - dimensional data space:
. ( ) ) s(&'))z =§(s<x>2 +s<x,'>2)
o [\o®) o(X) = o*(¥)
_i( R )2 i (¥,-(aX, +b))Z
Slo)) &o'¥)+d'o’(X)
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