ADA 13 -- 9am Tue 11 Oct 2022

Time Series Analysis, Ephemerides
Fourier Analysis:
Fourier frequencies and basis functions, Nyquist sampling.

Periodogram analysis (part 1): sidelobes, aliasing, harmonics

245

Hunting for Sinusoidal Signals

(e.g. Planet hunting -- circular orbit radial velocity curve)
Search a time series for a sinusoidal
oscillation of unknown frequency ω :

- Fit a sinusiod (scale 3 patterns):

$$
\begin{aligned}
X(t) & =X_{0}+A \cos \left(\omega t+\phi_{0}\right) \\
& =X_{0}+C \cos \omega t+S \sin \omega t
\end{aligned}
$$

$$
\text { Amplitude : } \quad A^{2}=C^{2}+S^{2}
$$

$$
\text { Phase at } t=0: \quad \phi_{0}=\tan ^{-1}(-S / C)
$$

$$
\begin{aligned}
& \text { Programming hint: } \\
& \text { Use phi=atan2(-s, })
\end{aligned}
$$ if you care about which

- "Fold" data on a trial period $P=2 \pi / \omega$ 4quadrant ϕ ends up in!

247
248

246

Timing Analysis - Defining an Ephemeris

$\sqrt{2}$
Epoch too early periodic lightcurve, e.g. mid-eclipse.
$t_{i} \pm \sigma_{i}$
The Ephemeris:
$t=t_{0}+P E=$ predicted time
$t_{0}=$ epoch of phase 0
$P=$ period
$E=n+\phi=$ cycle number + phase
$O-C=$ observed - calculated
$=t_{i}-\left(t_{0}+P E_{i}\right)$
$n_{i}=\operatorname{NINT}\left[\frac{t_{i}-t_{0}}{P}\right]$
phase: $\quad \phi_{i}=\frac{t_{i}-t_{0}}{P}-n_{i}, \quad 0<\phi<1$

Fit quadratic ephemeris: $\begin{aligned} & t=t_{0}+P_{0} E+B E^{2} \\ & P=d t / d E=P_{0}+2 B E \\ & \dot{P}=d P / d t=2 B / P \end{aligned}$

249

Periodogram of a finite data train

Purely sinusoidal time variation.
Sampled at N regularly spaced time intervals Δt

The periodogram:
Note χ^{2} minimum and peak in A at correct ω. Use $\Delta \chi^{2}=1$ to find $\sigma(\omega)$. Note sidelobes and finite width of peak.
Why not a delta function? (Spectral leakage)

Spectral Leakage due to finite timespan T

A pure sinusoid at frequency ω_{o} "leaks" into adjacent
frequencies ω due to the finite timespan T of the data.

$$
\hat{A}(\omega) \approx A_{0} \frac{\sum\left(\sin \omega_{0} t_{i}\right)\left(\sin \omega t_{i}\right) / \sigma_{i}^{2}}{\sum\left(\sin \omega t_{i}\right)^{2} / \sigma_{i}^{2}}
$$

= Optimal Scaling of
the pattern $\sin (\omega t)$ to fit data varying as $A_{o} \sin \left(\omega_{0} t\right)$.
Special case : Evenly spaced data,
at times $t_{i}=$ to $+i \Delta t$ for $i=1, . . N$,
and Equal error bars, $\quad \sigma=\sigma$:

This "Sinc" function has a $1 / x$ envelope and evenly spaced zeroes at frequency step

$$
\Delta \omega=2 \pi / N \Delta t=2 \pi / T .
$$

De-tuning" by $\Delta \omega$ gives an orthogonal function with 1 extra cycle per time $T=N \Delta t$.

251

Fourier Frequencies and Basis Functions

252

253

Periodogram

Pure sinusoid signal.
Sampled at N regularly spaced time intervals Δt

The periodogram:
Note χ^{2} minimum and
peak in A at correct ω
Use $\Delta \chi^{2}=1$ to find $\sigma(\omega)$.

Sidelobe spacing
$\Delta \omega=2 \pi / T=2 \pi / N \Delta t$
Nyquist frequency
$\omega_{N}=(N / 2) \Delta \omega$

254

255

Closely spaced frequencies

Wave trains drift in and out of phase.
Constructive and destructive interference produces "beating" in the light curve Beat frequency $\omega_{\mathrm{B}}=\left|\omega_{1}-\omega_{2}\right|$ Peaks overlap in periodogram

257

258

Non-sinusoidal Waveforms => Harmonics

- Fundamental frequency: ω_{0}
- Harmonics at $\omega=k \omega 0$, for $k=2,3, \ldots$
modify the shape of the waveform.
- Fit any shape periodic function by including amplitudes for :

$$
\begin{aligned}
& -\sin \left(2 \omega_{o s t}\right), \cos \left(2 \omega_{0} t\right) \\
& -\sin \left(3(3 o t), \cos \left(3 o o_{t} t\right)\right. \\
& - \text { etc }
\end{aligned}
$$

$$
\begin{aligned}
& X(t)=\hat{X}_{0}+\sum_{k=1}^{\infty}\left[\hat{S}_{k} \sin \left(k \omega_{0} t\right)+\hat{C}_{k} \cos \left(k \omega_{0} t\right)\right] \\
& \hat{A}_{k}^{2}=\hat{S}_{k}^{2}+\hat{C}_{k}^{2}, \hat{\phi}_{k}=\operatorname{atan} 2\left(-\hat{S}_{k}, \hat{C}_{k}\right)
\end{aligned}
$$

- Harmonics are approximately orthogonal

Add harmonics to the model until their amplitudes become
Add harmonics to the model, until their amplitudes become
poorly determined - Occam's razor, simplest model that fits
Use e.g. the BIC to decide which terms to include/omit.

- Harmonics above the Nyquist frequency will be aliased,
by "folding back" across ω Nyq , from ω to ω Nyq - (ω - ω Nyq)

260

Fini -- ADA 13

