AS4024 : Binary stars and accretion discs

Time-dependence and stability of accretion discs

(2 lectures)

Dr Michael Truss

mrt2@st-andrews.ac.uk

* Eclipse light curve → disc brightness distribution

- * Deep, sharp eclipse of hot, short wavelength central regions
- * Shallow, broad ecipse of cooler outer disc.

Two theories:

1. Mass transfer instability (out of favour):

Donor has convective envelope

As mass is lost, radius increases

More mass is lost, envelope becomes radiative

Mass transfer steadies until envelope becomes convective again

Dr Michael Truss

AS4024 : Binary stars and accretion discs

Dwarf nova outbursts

3. Viscosity

Reynolds Number Re = inertial force / viscous force

Molecular viscosity → Re ~ 10¹⁴ but require Re << 1 to explain outbursts ! ∴ need bigger viscosity

Shakura & Sunyaev (1973) : $v = \alpha c_s H$

 $\lambda < H$; $v < c_s \therefore \alpha < 1$

DN outburst : T(cold) = 4,000K ; T(hot) = 60,000K α (cold) = 0.01 ; α (hot) = 0.1

Dr Michael Truss

AS4024 : Binary stars and accretion discs