

<u>Tides</u>

Mass is transported inwards through a disc, so angular momentum must be transported outwards.
So what happens to the a.m. at the outer edge?

Dr Michael Truss

AS4024: Binary stars and accretion discs

Resonances

Gas returns to same position relative to the secondary star every orbit if:

$$j(\Omega - \Omega_{orb}) = k\Omega_{e}$$

Kepler's law then gives the positions of the resonances:

j=3,k=2 resonance is available to dwarf novae with q< 0.3!

"3:1 resonance"

Dr Michael Truss

Resonances

The Roche potential can be expressed as a set of functions:

$$\begin{split} \phi(\rho,\theta,t) = \sum \phi_\text{m}(r) \cos\left[m(\theta - \Omega_\text{orb}t)\right] \\ \text{Each normal mode m generates a response} \\ \exp[i(k\theta - l\Omega_\text{orb}t)] \end{split}$$

The (k,l) = (1,0) mode is eccentricity The (k,l) = (2,3) mode is a two-armed travelling spiral wave

Dr Michael Truss

Dr Michael Truss

AS4024: Binary stars and accretion discs

Spiral waves: observations

Doppler tomogram: map of accretion disc in velocity space derived from doppler shifts of spectral lines

Observed (IP Pegasi)

Simulated

Dr Michael Truss

AS4024: Binary stars and accretion discs

Magnetic accretion

Observational signatures:

- ★ Strong X-ray emission
- * Large linear and circular polarization
- * Periodicity of the WD spin period

Pressure balance defines the inner edge of the accretion disc:

$$\frac{B^2}{8\pi} \sim \rho(r) v^2(r)$$

For polars (AM Her systems), $B_{star} \sim 10^7\,G$ $~R_{\mu} \sim 10^{11} cm \sim a~$ NO DISC!

For intermediate polars, $B_{star} \sim 10^5~G$ $R_{\mu} \sim 10^{10} cm$ **TRUNCATED DISC**

Dr Michael Truss

TOADs

Tremendous Outburst **A**mplitude Dwarf Novae

- ★ Long superoutbursts★ No normal outbursts
- ★ Very long recurrence times (decades!)
- **★**Most famous is WZ Sagittae, which had outbursts in 1913, 1946, 1978 and 2001.

Dr Michael Truss

Accretion disc time-scales

Dynamical time-scale (orbiting) : $t_{_{\! 0}} \sim \Omega^{-1}$ [secs - mins]

Viscous time-scale (accretion) : $t_{visc} \sim R^2 / \nu = R^2 \Omega / \alpha c_s^2$ [days - weeks]

Thermal time-scale (heating/cooling) : $t_{th} \sim (\alpha \Omega)^{-1}$ [mins - hours]

Long recurrence times:

- ★ Very small viscosity?
- ★ Missing inner parts of the disc?

Dr Michael Truss

A0620-003

 $\begin{aligned} &M_{_{1}} \sim 4 M_{_{\odot}} \text{ (black hole!)} \\ &P_{_{\text{orb}}} \sim 7.75 \text{ h (short!)} \\ &q = 0.07 \text{ (tides!)} \end{aligned}$

★ Very bright in soft X-rays during outburst
★ Outbursts last more than a year
★ No superhumps

Dr Michael Truss

Self-irradiation

Irradiating flux $F = L_{\chi}(1-\beta) \cos \psi / 4\pi r^2$

 $\cos \psi = \sin(\theta - \phi) = \cos \theta \cos \phi [\tan \theta - \tan \phi] \simeq dH/dr - H/r$

 $L_{\chi} = \eta c^2 dM/dt$ and $F = \sigma T_{irr}^{-4}$

 $R_{irr}^{-2} = \{ \eta \, c^2 (1 \text{-}\beta) [dH/dr - H/r] \, / \, 4\pi \sigma T_H^{-4} \} \; dM/dt$

Dr Michael Truss

Summary

Accretion discs in interacting binaries show time-variability because...

CAUSE

Geometry and viewing angle Ionisation instability Tidal forces Magnetic fields Irradiation

and we didn't even mention...

Nuclear burning of hydrogen on the primary
General relativistic effects

Dr Michael Truss

EFFECT

Eclipses, dips and humps
Outbursts
Superhumps, superoutbursts, spiral waves
Truncation, polarisation, warps
Truncation, long outbursts, warps

X-ray bursts

Quasi-periodic oscillations, warps

Further reading.....

Accretion Power in Astrophysics 3rd ed.(chapters 5 and 6)

Frank, King & Raine, Cambridge University Press, 2002

Cataclysmic Variable Stars

Warner, Cambridge University Press, 1995

Exploring the X-Ray Universe

Charles & Seward, Cambridge University Press, 1995

Images of accretion discs I- the eclipse mapping method

Horne, Monthly Notices of the Royal Astronomical Society, 1985, 213, 129

The accretion disc limit cycle model

Cannizzo, Astrophysical Journal, 1993, 419, 318

Spiral structure in the accretion disc of the binary IP Pegasi

Steeghs, Harlaftis & Horne, MNRAS, 1997, 290, L28

On the nature of superoutbursts in dwarf novae

Truss, Murray & Wynn, MNRAS, 2001, 324, L1

Animations:

http://star-www.st-and.ac.uk/~mrt2/Welcome2.html

Dr Michael Truss