The Two-Body Problem

- Newtonian gravity
- 2 point masses
- good approx for stars

Two-Body motion

- Newtons laws of motion + law of gravitation

Equations of motion:
$\underline{F}_{1}=m_{1} \ddot{\underline{r}}_{1}=\frac{-G m_{1} m_{2}}{r^{2}} \underline{\hat{r}} \quad \underline{F}_{2}=m_{2} \ddot{\underline{\ddot{g}}}_{2}=-\underline{F}_{1}$
add the equations $m_{1} \ddot{\ddot{ }}_{1}+m_{2} \ddot{\underline{r}}_{2}=0$
integrate $d t \quad m_{1} \dot{\underline{r}}_{1}+m_{2} \underline{\underline{r}}_{2}=\underline{A}$
again $\quad m_{1} \underline{r}_{1}+m_{2} \underline{r}_{2}=\underline{A} t+\underline{B}$
definition of \underline{R}
$M \underline{R}=\underline{A} t+\underline{B}$
\therefore Centre of mass moves with constant velocity

- (unless acted on by an external force)

Relative Motion

- Important for eclipses
- Subtract two equations of motion

$$
\ddot{\underline{r}}=\ddot{\underline{r}}_{1}-\ddot{\underline{r}}_{2}=\frac{-G M}{r^{2}} \hat{\underline{r}}
$$

- Multiply by $\mu=m_{1} m_{2} / M=$ "reduced mass"

$$
\mu \ddot{r}=\frac{-G M \mu}{r^{2}} \underline{r}=\frac{-G m_{1} m_{2}}{r^{2}} \underline{\hat{r}}
$$

- Relative orbit is as if:
- orbiter has reduced mass $\mu=$ reduced mass
- stationary central mass is $M=$ total mass.

The Relative Orbit

Important for Eclipses

2 Barycentric Orbits

Important for Radial Velocities

Barycentric Orbits

- Important for radial velocity curves

$$
\begin{aligned}
& m_{1} \underline{R_{1}}+m_{2} \underline{R_{2}}=0 \text { centre of mass frame } \\
& \underline{r}=\underline{R_{1}}-\underline{R_{2}}=\frac{m_{1}+m_{2}}{m_{2}} \underline{R_{1}}=\frac{M}{m_{2}} \underline{R_{1}}=-\frac{M}{m_{1}} R_{2}
\end{aligned}
$$

equations of motion :

$$
\ddot{R}_{1}=-\frac{G m_{2}}{r^{3}} \underline{r} \quad \ddot{R}_{2}=-\frac{G m_{1}}{r^{3}}(-\underline{r})
$$

- Eliminate r^{3} using $r=f\left(R_{1}\right)$ and $r=f\left(R_{1}\right)$:

$$
\ddot{R}_{1}=-\frac{G m_{2}^{3}}{M^{2}} \frac{R_{1}}{R_{1}^{3}} \quad \ddot{R}_{2}=-\frac{G m_{1}^{3}}{M^{2}} \frac{R_{2}}{R_{2}^{3}}
$$

- the acceleration of each star relative to the centre of mass

Relative vs Barycentric orbits

- ($a, e, P, v) \quad$ relative orbit
- (a,e, P,v) $)_{1,2}$ barycentric orbits
- m_{1} and m_{2} on straight line thru C

$$
\begin{array}{ll}
P_{1}=P_{2}=P & e_{1}=e_{2}=e \\
a_{1}=a m_{2} / M & a_{2}=a m_{1} / M \\
a=a_{1}+a_{2} & M=m_{1}+m_{2}
\end{array}
$$

$$
a_{1}: a_{2}: a=V_{1}: V_{2}: V=m_{2}: m_{1}: M
$$

Kepler :

$$
\frac{4 \pi^{2}}{G P^{2}}=\frac{M}{a^{3}}=\frac{m_{2}^{3} / M^{2}}{a_{1}^{3}}=\frac{m_{1}^{3} / M^{2}}{a_{2}^{3}}
$$

Orbital Speed

orbital speed : $V^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2}$
conic section : $r=\frac{\ell}{1+e \cos \theta}$

$$
\frac{d}{d t}\left[1+e \cos \theta=\frac{\ell}{r}\right] \Rightarrow-e(\sin \theta) \dot{\theta}=-\frac{\ell}{r^{2}} \dot{r}
$$

specific angular momentum : $r^{2} \dot{\theta}=L$
$\therefore \quad \dot{r}=\frac{r^{2} \dot{\theta}}{\ell} e \sin \theta=\frac{L}{\ell} e \sin \theta$

$$
r \dot{\theta}=\frac{L}{r}=\frac{L}{\ell}(1+e \cos \theta)
$$

Orbital Speed

$$
\begin{array}{rlr}
V^{2} & =\left(\frac{L}{\ell}\right)^{2}\left[e^{2} \sin ^{2} \theta+(1+e \cos \theta)^{2}\right] & \ell=\frac{L^{2}}{G M} \\
& =\left(\frac{L}{\ell}\right)^{2}\left[e^{2}+1+2 e \cos \vartheta\right] & \frac{L}{\ell}=\frac{G M}{L} \\
& =\left(\frac{L}{\ell}\right)^{2}\left[2(e \cos \theta+1)+e^{2}-1\right] & \\
V^{2} & =\frac{L^{2}}{\ell}\left[\frac{2}{r}-\frac{1-e^{2}}{\ell}\right] &
\end{array}
$$

Orbital Speed

$$
V^{2}=\frac{L^{2}}{\ell}\left[\frac{2}{r}-\frac{1-e^{2}}{\ell}\right]
$$

ellipse : $\quad \ell=a\left(1-e^{2}\right) \quad L^{2}=G M \ell$

$$
V^{2}=G M\left[\frac{2}{r}-\frac{1}{a}\right]
$$

ellipse $\quad e<1 \quad \ell=a\left(1-e^{2}\right) \quad V^{2}=G M\left[\frac{2}{r}-\frac{1}{a}\right]$
circle

$$
e=0 \quad \ell=a
$$

parabola $\quad e=1$
$V^{2}=\frac{G M}{a}$
$V^{2}=\frac{2 G M}{r}$
hyperbola $\quad e>1 \quad \ell=a\left(1-e^{2}\right) \quad V^{2}=G M\left[\frac{2}{r}+\frac{1}{a}\right]$

Energy of Orbit

Kinetic energy:
$K E=T=\frac{1}{2} m_{1} V_{1}^{2}+\frac{1}{2} m_{2} V_{2}^{2}=\frac{m_{1} m_{2}}{2 M} V^{2}$
orbital speed: $\quad V^{2}=G M\left(\frac{2}{r}-\frac{1}{a}\right)$
Potential energy:
$P E=W=-\int_{r}^{\infty} \frac{G m_{1} m_{2}}{r^{2}} d r=-\frac{G m_{1} m_{2}}{r}$
Total energy: $E=T+W=-\frac{G m_{1} m_{2}}{2 a}<0$
Binding energy: $-E>0$

Angular momentum of the orbit

- Angular momentum vector $\underline{\mathbf{J}}$, defines orbital plane
$-\underline{\mathrm{J}}=\mathrm{m}_{1} \underline{\underline{L}}_{1}+\mathrm{m}_{2} \underline{\underline{L}}_{2}$ and $\mathrm{L}^{2}=\mathrm{GMa}\left(1-\mathrm{e}^{2}\right)$

$$
\begin{aligned}
& \text { and } L_{1}{ }^{2}=G\left(m_{2}{ }^{3} / M^{2}\right) a_{1}\left(1-e^{2}\right) \\
& \text { and } a_{1} / a=m_{2} / M
\end{aligned}
$$

- same for \underline{L}_{2}
- hence

$$
L_{1}=\frac{m_{2}^{2}}{M^{2}} L ; \quad L_{2}=\frac{m_{1}^{2}}{M^{2}} L
$$

therefore

$$
J^{2}=\frac{G m_{1}^{2} m_{2}^{2}}{M} a\left(1-e^{2}\right)
$$

and the final expression for J is

$$
J=\frac{2 \pi a^{2} m_{1} m_{2}}{P M} \sqrt{1-e^{2}}
$$

Orbital Angular momentum

- Given masses m1,m2 and Energy E,
- the angular momentum J determines the shape of the orbit
- ie the eccentricity (or the conic section parameter I)
- For given E,
- circular orbits have maximum J
- Jdecreases as $e \longrightarrow 1$
- orbit becomes rectilinear ellipse
- relation between E, and J very important in
determining when systems interact mass exchange and orbital evolution

