Roche Model

- Stars deform in close binary systems
 - tides
 - rotation
- Observations
 - light curve effects from aspherical distortions
- Small perturbations -- Legendre Polynomials
- Large deformations-- Roche Model

Dimensionless Roche Potential

factor out
$$-\frac{\mathbf{w}^2}{2} = -\frac{G M}{2 a^3}$$
 and $x \to \frac{x}{a}$, etc.
 $\Phi(x, y, z) = -\frac{\mathbf{w}^2}{2} \Phi_N\left(\frac{x}{a}, \frac{y}{a}, \frac{z}{a}\right)$

dimensionless Roche Potential:

$$\Phi_N(x, y, z) = \frac{2}{(1+q)} \frac{1}{r_1} + \frac{2q}{(1+q)} \frac{1}{r_2} + \left(x - \frac{q}{(1+q)}\right)^2 + y^2$$

Describes shape of potential surfaces independently of the mass and size of the system.

single parameter : q

Slice along X axis

• Lagrange points L₁, L₂, L₃, and L₄, L₅

Lagrange points

Points where

$$\nabla \Phi_n = 0$$

- L₁ Inner Lagrange Point
 - in between two stars
 - matter can flow freely from one star to other
 - mass exhange
- L₂ on opposite side of secondary
 - matter can most easily leave system
- L₃ on opposite side of primary
- L₄, L₅ in lobes perpendicular to line joining binary
 - form equilateral triangles with centres of two stars
- Roche-lobes:: surfaces which just touch at L₁
 - maximum size of non-contact systems

AS 4024

Binary Stars and Accretion Disks

Mass transfer and loss

Roche Lobe

Roche Lobe Volumes

• Effective size

- radius of Roche-lobe R_L
- fit to results of numerical integration
- Eggleton formula:

$$\frac{R_L}{a} \approx \frac{0.49q^{2/3}}{0.69q^{2/3} + \ln(1+q^{1/3})}a$$

- Effectively, it is a tidal radius where
 - mean density in lobes are equal

$$\frac{R_{L,2}}{a} \approx \frac{1}{2} \left(\frac{m_2}{M}\right)^{1/3} \text{ for } 0 \le q \le 0.8$$

Inner Lagrange point

• to find L₁

$$\Phi_n(x,0,0) = \frac{2}{(1+q)|x|} + \frac{2q}{(1+q)|1-x|} + \left(x - \frac{q}{1+q}\right)^2$$

for
$$0 < x < 1$$
,

$$\frac{\partial \Phi_n}{\partial x} = \frac{-2}{(1+q)x^2} + \frac{2q}{(1+q)(1-x)^2} + 2\left(x - \frac{q}{1+q}\right)$$

maximum of $\Phi(x)$ at

$$0 = \frac{1}{x^2} - x + q \left((1 - x) - \frac{1}{(1 - x)^2} \right)$$

- solve numerically

Modelling lightcurves

Roche Lobes

Limb Darkening

linear limb darkening law $I(\mathbf{q}) = I_0 (1 - u + u \cos \mathbf{q})$ Eddington - Barbier relation $I_n(\mathbf{q}, \mathbf{l}) \approx B_n (T(\mathbf{q}), \mathbf{l})$ $T(\mathbf{q}) = T(\mathbf{t} \approx \cos \mathbf{q})$

See down to hotter zones

Binary Stars and Accretion Disks

Gravity Darkening

Flux emerges more easily where local scale height is small. (same opacity, shorter thickness)

Darker in low-gravity regions: equator of rotating star g=0 at L1

von Zeipel gravity darkening law

$$T \rightarrow T_0 \left(\frac{g}{g_0}\right)^{b}$$

$$g = |\nabla \Phi| \quad T_0, g_0 \text{ at pole of star}$$

$$b \approx 0.25 \quad \text{radiative envelope (O, B, A, early F)}$$

$$b \approx 0.08 \quad \text{convective envelope (late F, G, K, M)}$$

Heating Effects

Flux from below and from above

irradiation

$$T^{4} \rightarrow T^{4} + T_{irr}^{4}$$

$$\mathbf{s} T_{irr}^{4} = F_{irr} = \int \frac{(1-A) dL}{4\mathbf{p} r^{2}} \cos \mathbf{q}_{irr}$$

$$dL' = dA' \mathbf{s} T^{4}(\underline{r'}) \cos \mathbf{q'} (1+u-u \cos \mathbf{q'})$$

Proximity Effects

Binaries in Roche-Lobes

close to contact

contact (W UMa)

