Lecture 2

Astronomical Distances

Astronomical Distances

- Size of Earth
- Distance to the Moon (1 sec)
- Distance to the Sun (8 min)
- Distance to other stars (years)
- Distance to centre of our Galaxy (30,000 yr to centre)
- Distances to other Galaxies
(2 million years to Andromeda)
- Size of the Universe (13 billion years)

Distance Methods

- Standard Rulers ==> Angular Size Distances

$$
\theta=\frac{l}{D} \longrightarrow l \quad D_{A}=\frac{l}{\theta}
$$

(for small angles << 1 radian)

- Standard Candles ==> Luminosity Distances

$$
F=\frac{\text { energy } / \text { time }}{\text { area }}=\frac{L}{4 \pi D^{2}}
$$

$$
D_{L}=\left(\frac{L}{4 \pi F}\right)^{1 / 2}
$$

- Light Travel Time

$$
t=\frac{\text { distance }}{\text { velocity }}=\frac{2 D}{c}
$$

$$
D_{t}=\frac{c}{2 t}
$$

Cosmic Distance Ladder

Size of Earth

- Earth radius R
- Two poles, height: H
- North-South separation: S
- Shadow length at noon: L

To find R, measure \mathbf{H} and L at 2 latitudes separated by S .

Ancient Greeks used Athens to Alexandria, finding $R \sim 6300 \mathrm{~km}$

Size of and Distance to the Moon

- Lunar Eclipse gives $\mathrm{R}_{\text {moon }} \sim \mathrm{R}_{\text {Earth }} 3.5$
- Angular Diameter Distance

Size of and Distance to the Sun

- Same angular diameter as Moon.
- Moon closer -- by what factor?

$$
\theta \approx \frac{R_{\text {moon }}}{D_{\text {moon }}}=\frac{R_{\text {sun }}}{D_{\text {sun }}}
$$

Earth's Orbit size from Jupiter's Moons

Jupiter + orbiting moons

Due to light travel time across Earth's orbit, Jupiter's moons appear to orbit up to 8 minutes ahead or behind schedule.

Sun's Size and Distance from Transits of Venus

Relative size of orbits:

$$
\sin \left(44^{\circ}\right) \approx \frac{a_{\text {Venus }}}{a_{\text {Earth }}} \approx 0.69
$$

or, from Kepler's law:
$\left(\frac{a_{V}}{a_{E}}\right)^{3}=\left(\frac{P_{V}}{P_{E}}\right)^{2}$
$\theta_{E} \frac{R_{E} \sin \theta_{E}}{a_{E}-a_{V}}=\alpha=\frac{R_{S} \sin \theta_{S}}{a_{V}}$
AS 4022 Cosmology

Stellar Parallaxes

$$
a_{E} \equiv 1 \mathrm{AU}
$$

Motion in the sky combines
Proper motion + Parallax.

$\frac{D}{1 \mathrm{AU}}=\frac{1 \text { radian }}{\theta}$
1 parsec = 1 "parallax arcsec"

$$
\frac{D}{\mathrm{pc}}=\frac{1 \mathrm{arcsec}}{\theta}
$$

1 radian = 206265 arcsec
1 parsec = 206265 AU
$1 \mathrm{pc}=206265 \times 8$ light minutes
$=3.3$ light years $=3.1 \times 10^{18} \mathrm{~cm}$

AS 4022 Cosmology

Imaging from ground:
0.02 arcsec $=>50 \mathrm{pc}$

Hipparcos satellite
0.003 arcsec => 300 pc

GAIA satellite (2012?):
10^{-4} arcsec => 10 kpc

Luminosity Distances

Use the inverse-square law:
$F=\frac{L}{4 \pi D^{2}}=\frac{\text { energy } / \text { time }}{\text { area }}$

Luminosity Distance:

Apparent magnitude: $\quad m \equiv-2.5 \log \left(F / F_{V e g a}\right)$
e.g. 5 mags $=100 x$ fainter $=10 x$ farther away
0.1 mag $=10 \%$ fainter $=5 \%$ farther away

$$
(1+x)^{2} \approx 1+2 x
$$

Absolute magnitude M

$$
(1.05)^{2} \approx 1.1
$$

$=$ apparent magnitude m at standard distance 10 pc

$$
m=M+5 \log (D / 10 \mathrm{pc})
$$

since $F \propto D^{-2}$

Distance Modulus (ignoring dust extinction):

$$
m-M=5 \log (D / \mathrm{pc})-5
$$

How Far are the Stars?

Sun: $\quad m_{v}=-24 \mathrm{mag}$
Brightest stars (about 10) :

$$
\mathrm{m}_{\mathrm{v}}<+1 \mathrm{mag}
$$

Faintest (naked-eye) stars (about 6000) :

$$
m_{v}<+6 \mathrm{mag}
$$

Relative distances :
5 mag $=100 \times$ fainter $=10 \times$ farther away
$\mathbf{2 5} \mathbf{~ m a g}=10^{10} \mathrm{x}$ fainter $=10^{5} \mathrm{x}$ farther away
Distance to a sun-like $m_{v}=+1$ mag star:
8×10^{5} light minutes $=1.5$ light years

Main-Sequence Fitting

Stars with Hipparcos parallaxes calibrate the Colour-Magnitude (Hertzsprung-Russel) diagram.
AS 4022 Cosmology

Magnitude shift gives ratio of star cluster distances:

$$
m_{1}-m_{2}=5 \log \left(D_{1} / D_{2}\right)
$$

Cepheid Variable Stars

- H ionisation instability drives pulsations.
- Pulsation period ~ sound travel time
- Period-Luminosity relationship L~P1.3

- Calibrate using parallax, main-sequence fitting.
- Also from Supernova 1987A, light travel time to circumstellar ring --> $D_{\text {LMC }}=51 \mathrm{kpc}+/-6 \%$.
- Hubble used Cepheids in Local Group D < 2 Mpc.
- HST sees Cepheids in Virgo Cluster

D < 20 Mpc.

Cepheid Period-Luminosity

Distance to the Galactic Centre

$D($ Galactic Centre $)=8.5 \mathrm{kpc}$

- Dust in Galactic Disk $A_{V} \approx 1 \mathrm{mag} / \mathrm{kpc}$
- RR Lyr variables in Galactic Bulge
$M_{V}($ RR Lyr $) \sim+0.5$ mag
- Globular Clusters in Galactic Halo

Cepheids
Main Sequence

Distance to Large Magellenic Cloud

- SN 1987a explosion illuminates circumstellar gas ring.
- Light travel time gives linear size.
- Observed angular size then gives distance.

Gives $\mathrm{D}(\mathrm{LMC})=51 \mathrm{kpc}$

$$
\begin{aligned}
& c t_{0}=D \\
& c t_{1}
\end{aligned}=D+R-R \sin i \quad \begin{aligned}
c t_{2} & \approx D+R+R \sin i \\
c\left(t_{2}\right. & \left.-t_{1}\right)=2 R \sin i \\
& =400 \text { light days }
\end{aligned}
$$

AShecks the Cepheid distances

Distances to Galaxies

Standard Candles ?

Cepheids (to 20 Mpc)
Brightest stars
Planetary nebulae
Globular Clusters
Supernovae (e.g. Type 1a 20-400 Mpc)

Galaxies (e.g. using Luminosity-Rotation Velocity correlations)

M87

Giant Elliptical in Virgo Cluster $\sim 10^{4}$ globular clusters

Cepheid Distance to M100

Match periods to get same luminosity.
Difference in apparent mag gives ratio of distances.

$$
\mathrm{D}=50 \mathrm{kpc} \times 10^{(25-13) / 5}=13 \mathrm{Mpc}
$$

M100 Cepheid variables

$$
m-M=5 \log (D / \mathrm{pc})-5
$$

$$
\begin{gathered}
P=50 d \quad \Rightarrow \quad M_{V}=13-18.5=-5.5 \mathrm{mag} \\
m_{v}=25 \mathrm{mag} \quad m-M=30.5 \mathrm{mag} \\
\log (D / \mathrm{pc})=(\mathrm{m}-M+5) / 5=7.1 \\
D=10^{7.1}=13 \mathrm{Mpc}
\end{gathered}
$$

Hubble's Diagram (~1924)

Slope $=\mathrm{H}_{0}=500 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$ (!)
Cepheid distance calibration was wrong (dust in Milky Way was not yet recognised).

Hubble was wrong (but his idea was good).

HST Key Project

Cepheid Distances

Freedman et al.
Distance (Mpc) 2001 ApJ 553, 47.

Why go beyond Cepheids?

- HST sees Cepheids to $\mathrm{D}=\mathbf{1 0 - 2 0}$ Mpc.
- $H_{0} \times D=70 \times 15 \sim 1000 \mathrm{~km} / \mathrm{s}$.
- not really far enough
- galaxy pecular velocities $\sim 500 \mathrm{~km} / \mathrm{s}$.
- galaxies falling toward Virgo cluster.

CMB dipole --> Milky Way velocity

Largely due to Milky Way (Local Group) falling toward Virgo Cluster.

SN Type la in Virgo Galaxy NGC 4526

Supernova outshines

 the entire galaxy, but only for a month or so.```
Type II -- massive
stars (M > 8 M MuN) explode at end of life.
```

Type la -- white dwarf in a binary system accretes mass, collapses when
$\mathrm{M}_{\mathrm{WD}}=1.4 \mathrm{M}_{\text {SUN }}$.
Good "standard bombs".

Calibrate SN distances using HST to see Cepheids in Virgo galaxies.

## Calibrating "Standard Bombs"

\author{

1. Brighter ones decline more slowly. <br> 2. Time runs slower by factor ( $1+z$ ).
}

## AFTER correcting:

Constant peak brightness

$$
M_{B}=-19.7
$$

Observed peak magnitude: $m=M+5 \log (d / M p c)+25$ gives the distance!

## HST Key Project



## Galaxy Luminosity Calibrations

$L=4 \pi D^{2} F=K V^{4}$
$D=V^{2} \sqrt{\frac{K}{4 \pi F}}$

Determine K using galaxies with Type la Supernovae.

Measure flux $F$ and velocity V to determine distance $D$.

Tully - Fisher relation
spirals: $V=$ rotation velocity
( HI 21 cm emission line width )
Faber - Jackson relation
ellipticals: $\quad V=$ stellar velocity dispersion
( optical absorption line widths )
"The Fundamental Plane of Ellipticals" improves the F-J relation by including a surface brightness correction.

## HST Key Project

$$
H_{0} \approx 72 \pm 3 \pm 7 \quad \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
$$

Freedman, et al. 2001 ApJ 553, 47.



## Frailty of the Distance Ladder

- Parallax
- 0-300 pc
- (GAIA 20155 kpc )
- Cepheids
- ~100 pc - 20 Mpc ( HST)
- Type la SNe
- 20 - 400 Mpc ( 8 m )
$-\quad z \sim 1.5$ (HST )
- Little overlap between Cepheids and SN Ia.


Only 3 galaxies with both Cepheids and SN Ia

