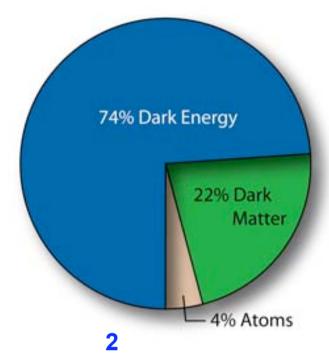
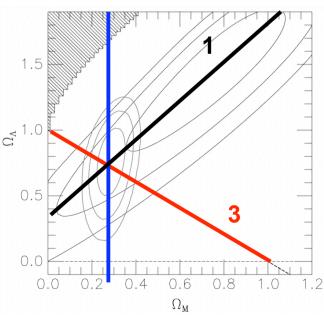
Cosmic Microwave Background

Flat Geometry

$$\Omega_0 = \Omega_M + \Omega_{\Lambda}$$

$$\approx 1.0$$





1965 -- Penzias + Wilson



Bell Labs telecommunications engineers find excess microwave noise from the sky.

~1% of thermal (T ~ 300° K) noise ---> T ~ 3° K

Afterglow of the Big Bang

CMB = Cosmic Microwave Background

Confirms a forgotten 1948 prediction by Gamow.

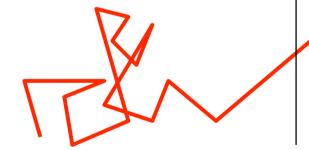
Nobel Prize -> P+W

Recombination Epoch (z~1100)

ionised plasma --> neutral gas

- Redshift z > 1100
- Temp T > 3000 K
- **H** ionised
- electron -- photon Thompson scattering

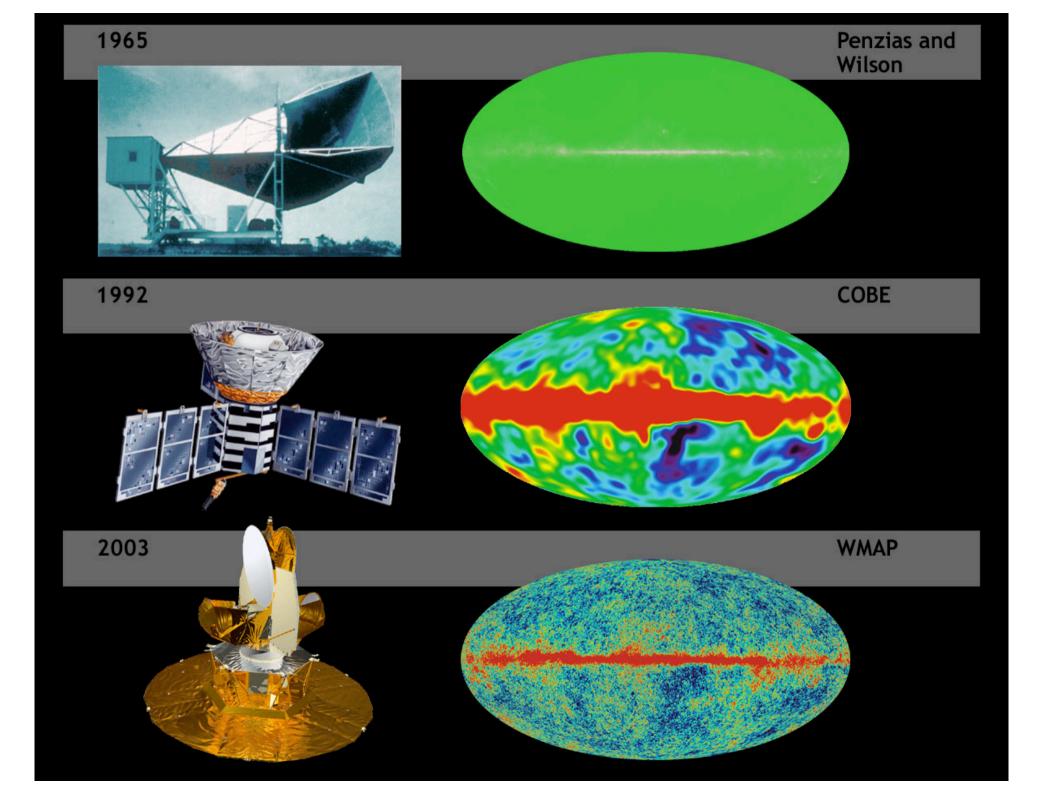
- z < 1100
- T < 3000 K
- H recombined
- almost no electrons
- neutral atoms
- photons set free



e - scattering optical depth

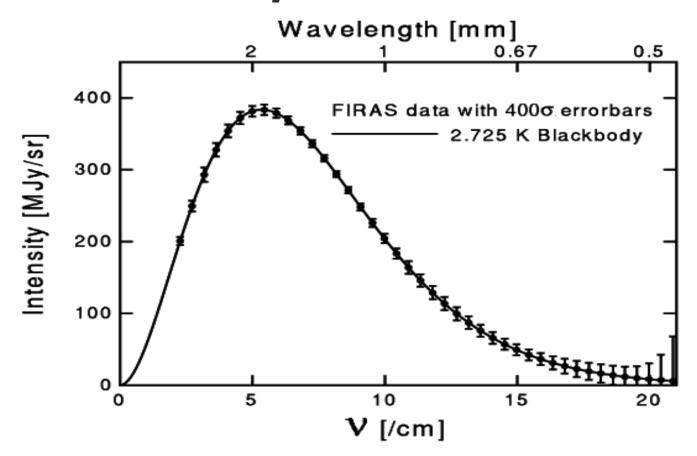
$$\tau(z) \approx \left(\frac{z}{1080}\right)^{13}$$

thin surface of last scattering



NASA 1992 - COBE COsmic Background Explorer

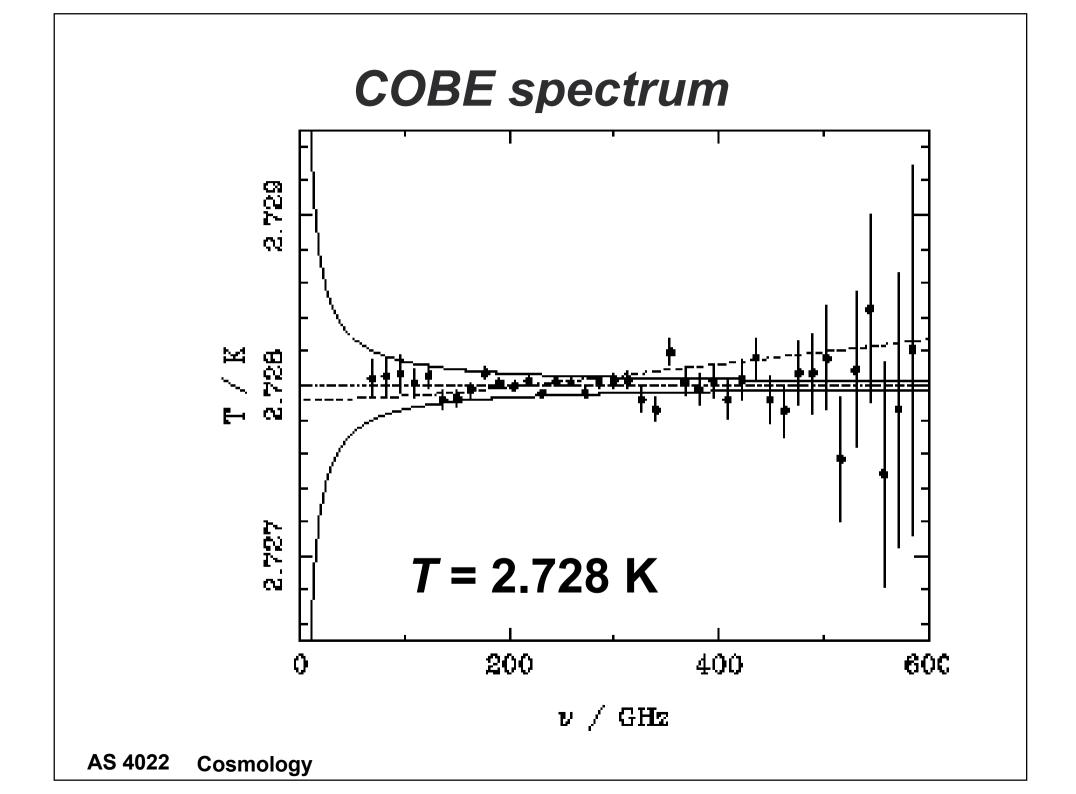
COBE spectrum of CMB



A perfect Blackbody!

No spectral lines -- strong test of Big Bang. Expansion preserves the blackbody spectrum.

$$T(z) = T_0 (1+z)$$
 $T_0 \sim 3000 \text{ K}$ $z \sim 1100$



Radiation -> Matter -> Vacuum

$$T = 2.728 \text{ K}$$

radiation energy density:

$$\rho_{\rm R} = \frac{u(T)}{c^2} = \frac{4 \sigma}{c^3} T^4$$

$$\Omega_{\rm R} = 8.6 \times 10^{-5} \left(\frac{0.7}{h} \right)^2 \sim 0.01\%$$

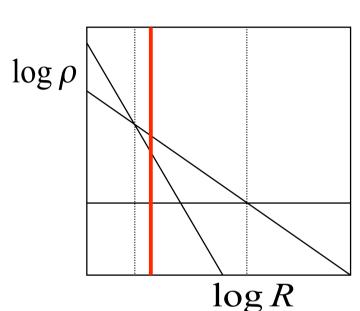
(including neutrinos)

matter - radiation equality:

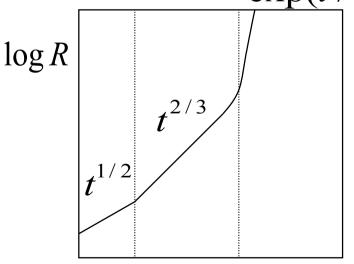
$$\frac{\Omega_{\mathrm{R}}(z)}{\Omega_{\mathrm{M}}(z)} = \frac{(1+z)^4 \Omega_{\mathrm{R}}}{(1+z)^3 \Omega_{\mathrm{M}}} = 1$$

$$(1+z_{eq}) = \frac{\Omega_{\rm M}}{\Omega_{\rm R}} = 3500 \left(\frac{\Omega_{\rm M}}{0.3}\right) \left(\frac{2.73K}{T}\right)^4$$

Matter-dominated at z=1100



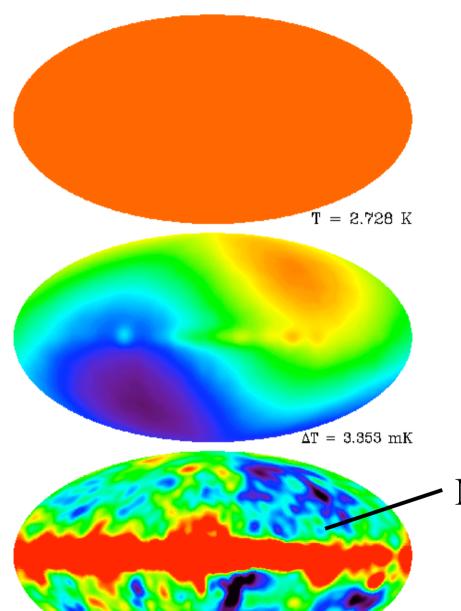
 $\exp(t/t_{\Lambda})$



 $\log t$

Cosmic Microwave Background

 $\Delta T = 18 \mu K$



Almost isotropic

$$T = 2.728 \text{ K}$$

Dipole anisotropy

$$\frac{V}{c} = \frac{\Delta \lambda}{\lambda} = \frac{\Delta T}{T} \approx 10^{-3}$$

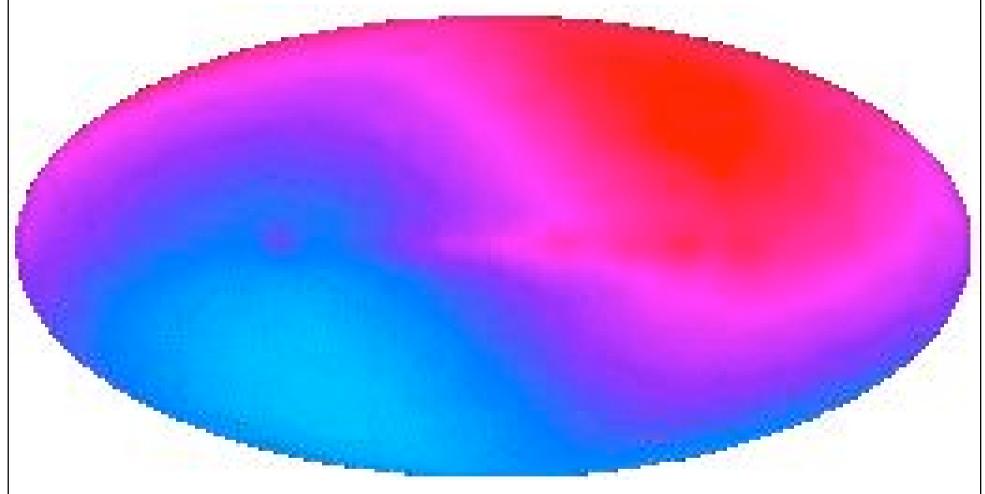
Our velocity:

$$V \approx 600 \text{ km/s}$$

Milky Way sources

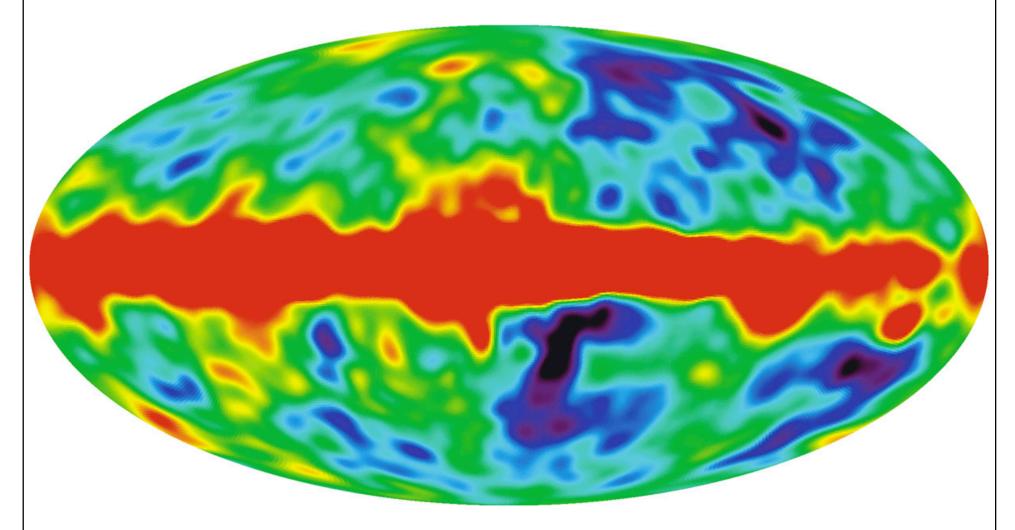
+ anisotropies
$$\frac{\Delta T}{T} \sim 10^{-5}$$

0.1% CMB dipole anisotropy velocity relative to CMB photons



$$T(\theta) = T_0 \left(1 + \frac{V}{c} \cos \theta + ... \right) \rightarrow \frac{V_{SUN} = 371 \pm 1 \,\mathrm{km \, s^{-1}}}{V_{MW} \approx 600 \,\mathrm{km \, s^{-1}}}$$

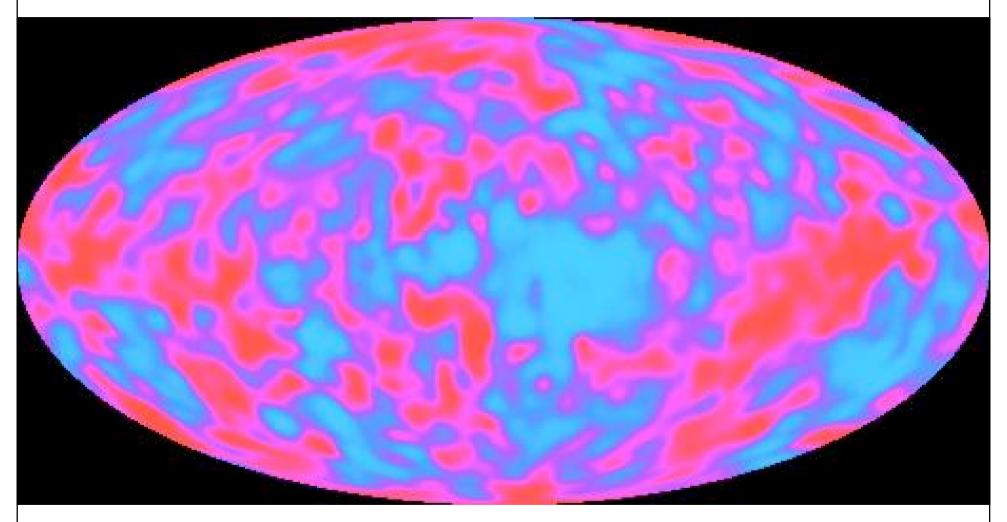
COBE 4-year map



Milky Way emission

subtract by using maps at several frequencies

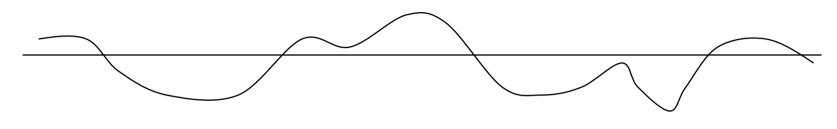
COBE - tiny ripples



$$\frac{\delta T}{T} \sim 10^{-5}$$

Resolution ~ 7°

Tiny Ripples at Redshift 1100



$$\frac{\Delta T}{T} \approx \frac{\Delta \rho}{4 \rho} \sim 10^{-5} \text{ at } z = 1100$$

Ripples are:

relics of the Big Bang

initial quantum fluctuations expanded by early inflation

the seeds of later galaxy/cluster formation.

standard yardsticks for measuring curvature

(and other cosmology parameters)

1999 - Boomerang in Antarctica

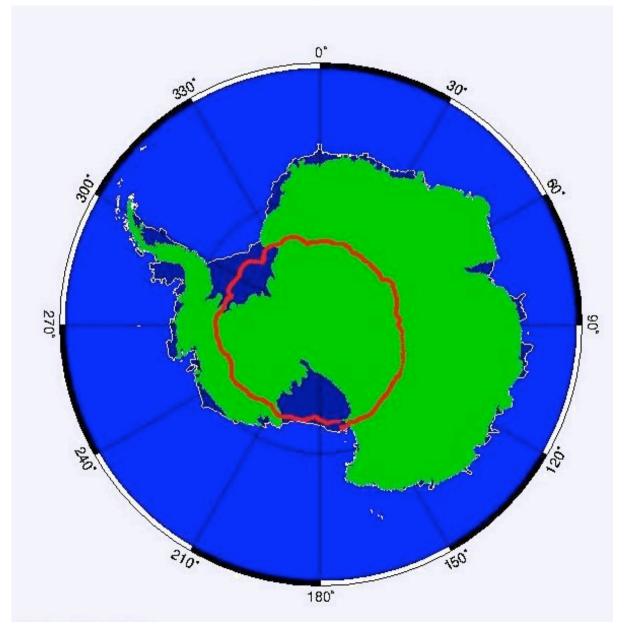
Baloon Observations Of Millimetric Extragalactic Radiation Anisotropy and Geophysics

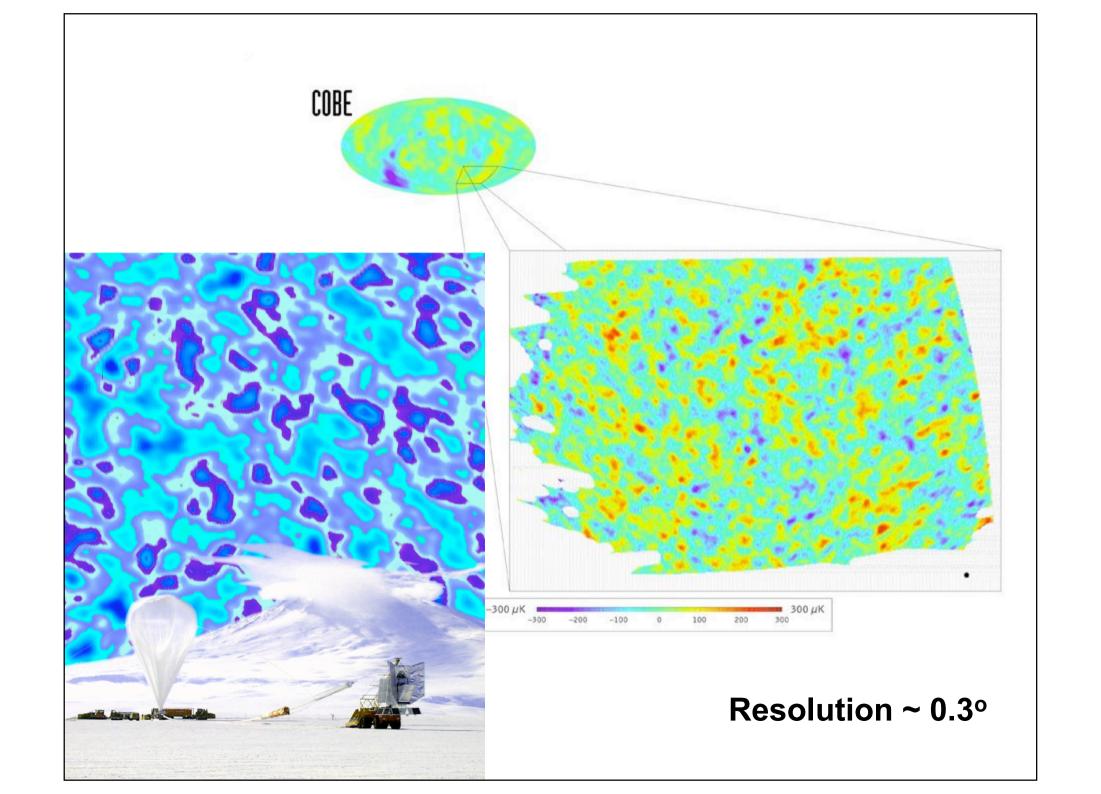


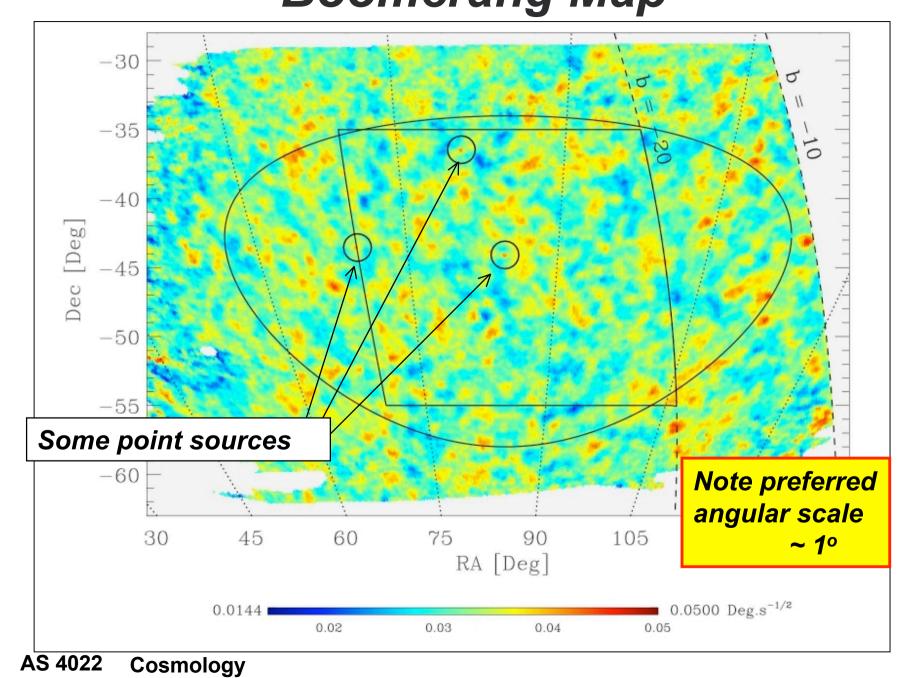
Boomerang's Baloon

Boomerang's Stratospheric Flight Track

Altitude 37 km 10 days







Spherical Harmonics

Fit temperature map with a series of spherical harmonics

$$\frac{\Delta T}{T}(\theta, \phi) = \sum_{l,m} a_{lm} Y_{lm}(\theta, \phi)$$

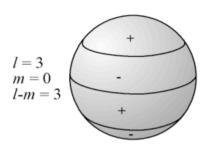
angular power spectrum

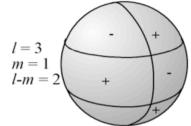
$$C_l = \left\langle \left| a_{lm} \right|^2 \right\rangle$$
 average $-l \le m \le l$

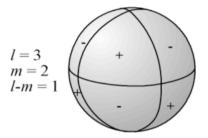
dimensionless power spectrum

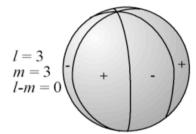
$$l(l+1)C_l \propto \frac{d\langle (\Delta T/T)^2 \rangle}{d \ln l}$$

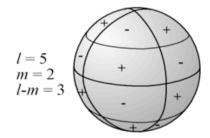
angular scale:
$$\Delta \theta \approx \frac{\pi}{l} = \frac{180^{\circ}}{l}$$







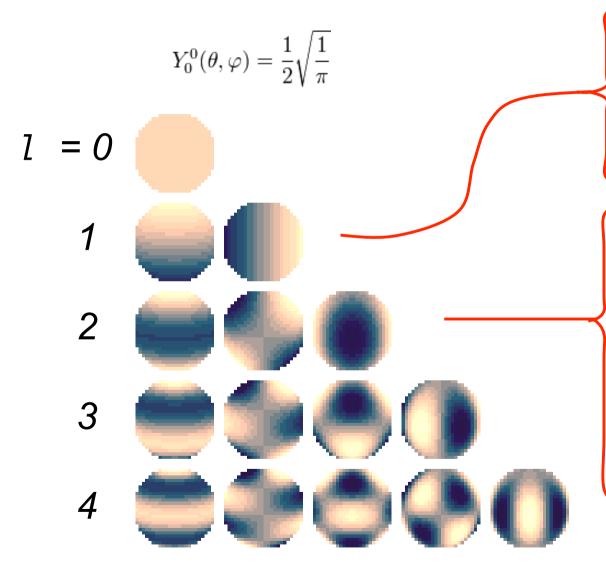




m cycles in longitude

1 - mnodes inlatitude

Spherical Harmonics



$$Y_1^{-1}(\theta,\varphi) = \frac{1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta \,e^{-i\varphi}$$

$$Y_1^0(\theta,\varphi) = \frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta$$

$$Y_1^1(\theta,\varphi) = \frac{-1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta \,e^{i\varphi}$$

$$Y_2^{-2}(\theta,\varphi) = \frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin^2\theta \, e^{-2i\varphi}$$

$$Y_2^{-1}(\theta,\varphi) = \frac{1}{2}\sqrt{\frac{15}{2\pi}}\sin\theta \, \cos\theta \, e^{-i\varphi}$$

$$Y_2^0(\theta,\varphi) = \frac{1}{4}\sqrt{\frac{5}{\pi}}(3\cos^2\theta - 1)$$

$$Y_2^1(\theta,\varphi) = \frac{-1}{2}\sqrt{\frac{15}{2\pi}}\sin\theta \, \cos\theta \, e^{i\varphi}$$

$$Y_2^2(\theta,\varphi) = \frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin\theta \, \cos\theta \, e^{i\varphi}$$

m = 0

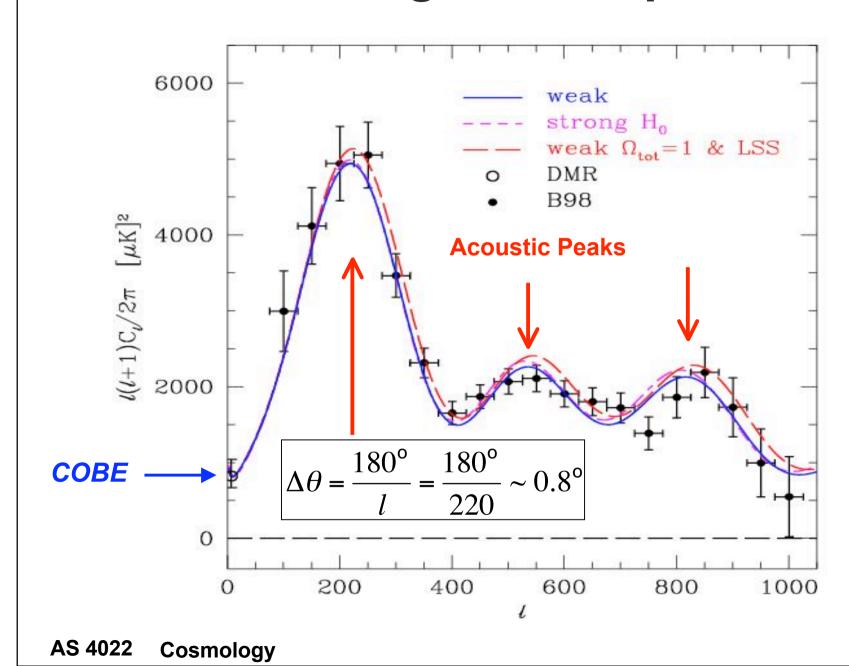
1

2

3

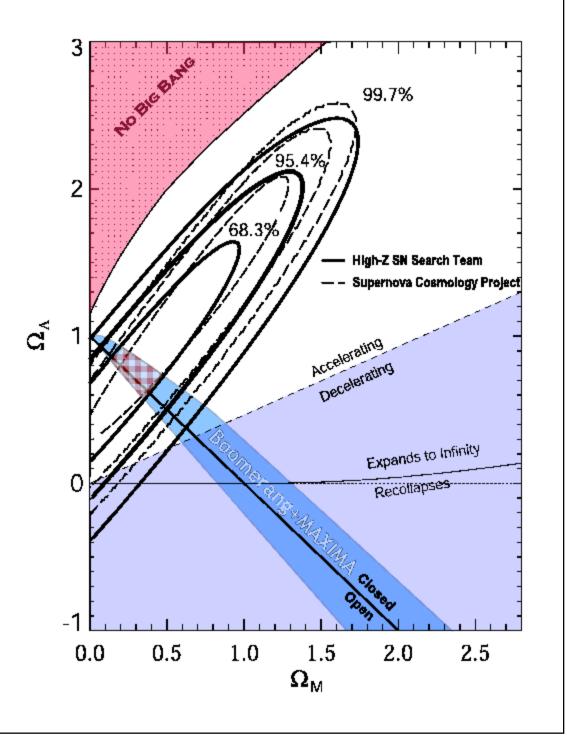
4

Boomerang Power Spectrum



Supernovae + CMB ripples

Pre-WMAP constraints
From BOOMERANG and MAXIMA circa 2002



WMAP

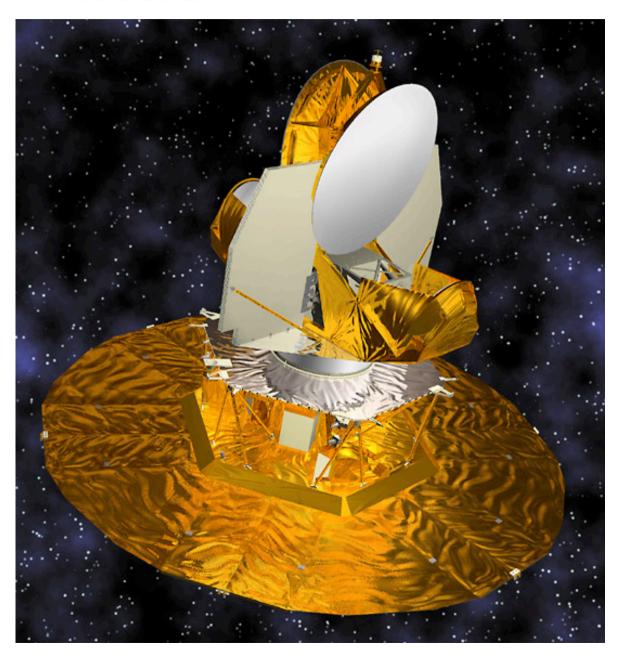
NASA 2001...

Wilkinson

Microwave

Anisotropy

Probe



COBE

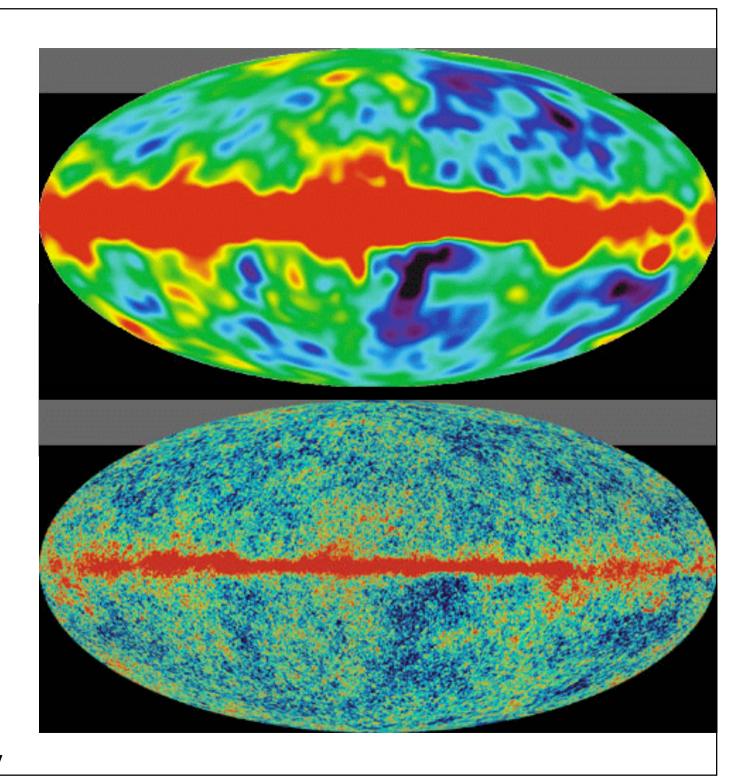
1992

7 degree resolution

WMAP

2003

20 arcmin resolution



COBE

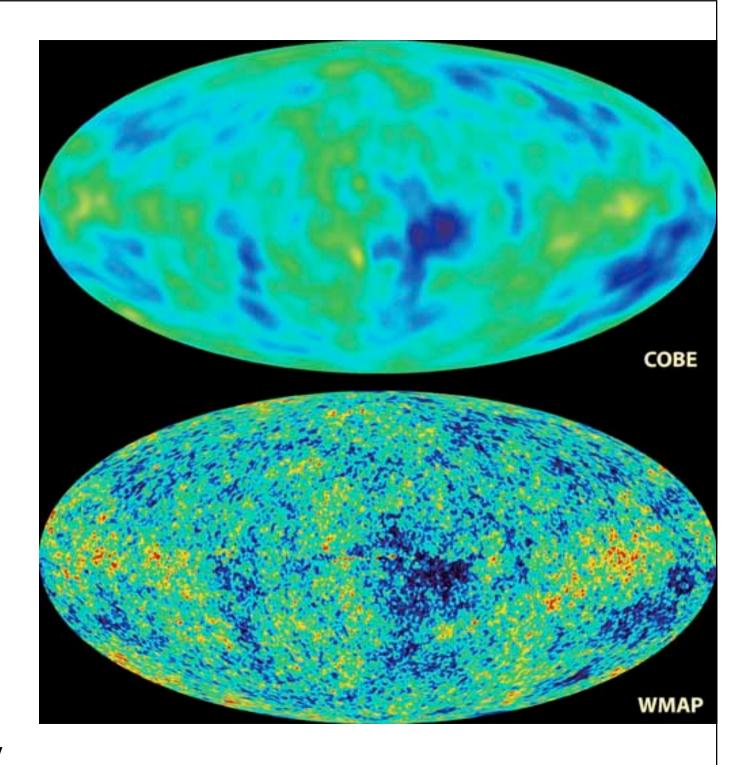
1992

7 degree resolution

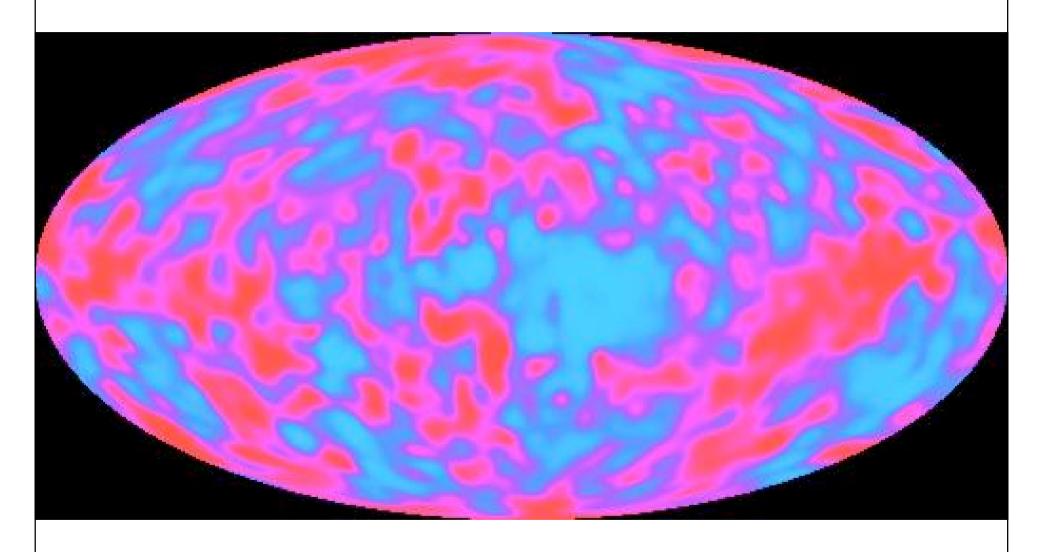
WMAP

2003

20 arcmin resolution

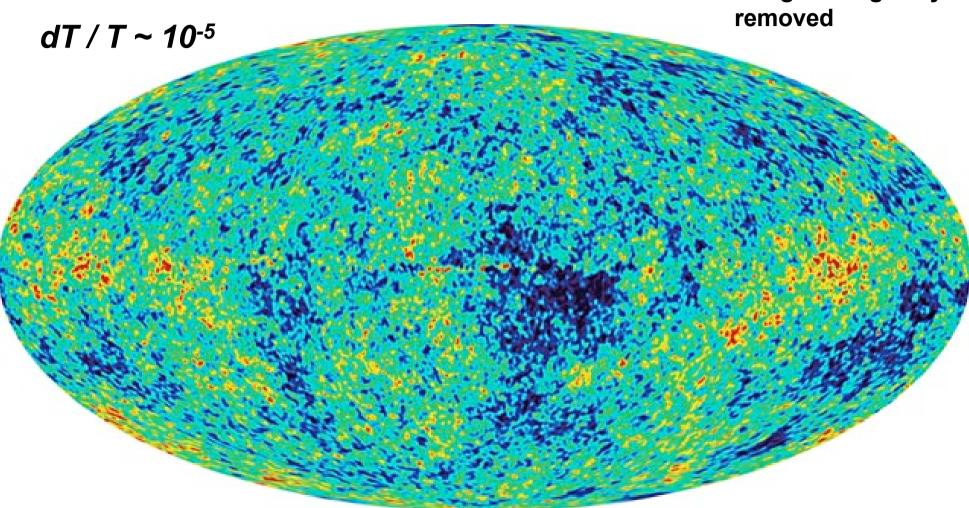


COBE - temperature ripples



2003 WMAP all-sky

Dipole and foreground galaxy removed



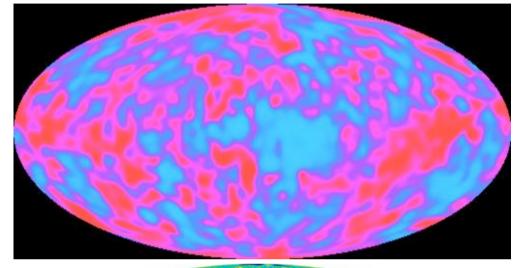
Snapshot at z=1100 of quantum fluctuations stretched by inflation.

Dark matter potential wells that seed later galaxy formation.

AS 4022 Cosmology

T = 2.73 K

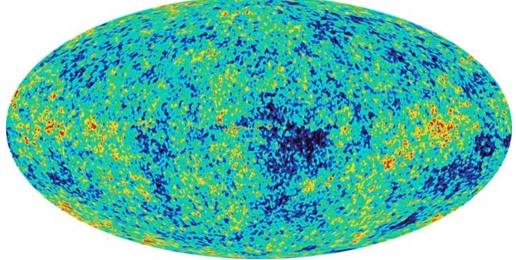
CMB Anisotropies



 $\frac{\Delta T}{T} \sim 10^{-5}$

WMAP 2004

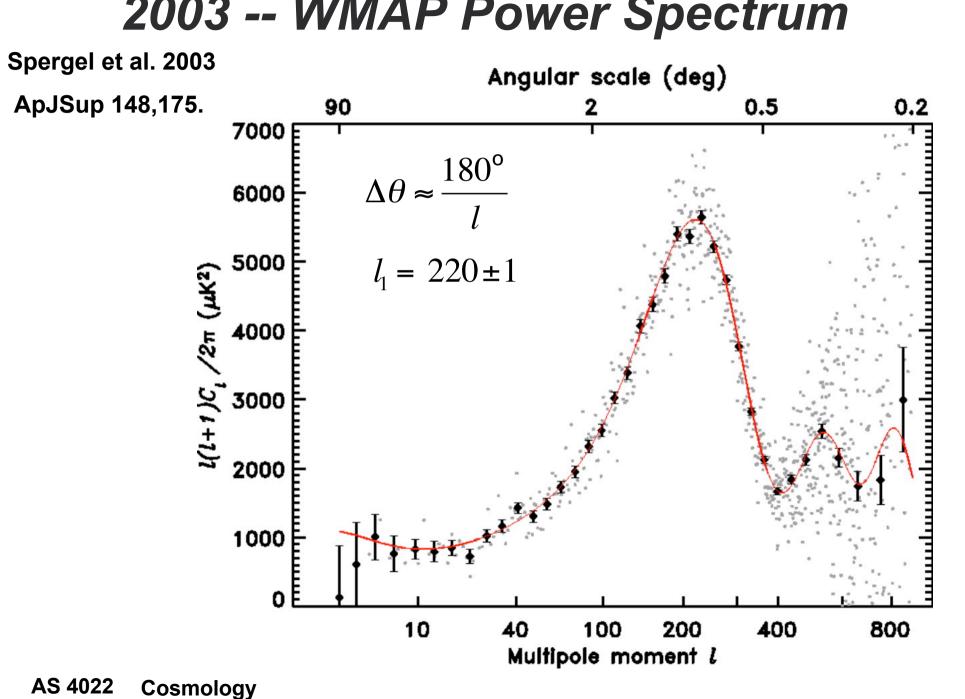
AS 4022



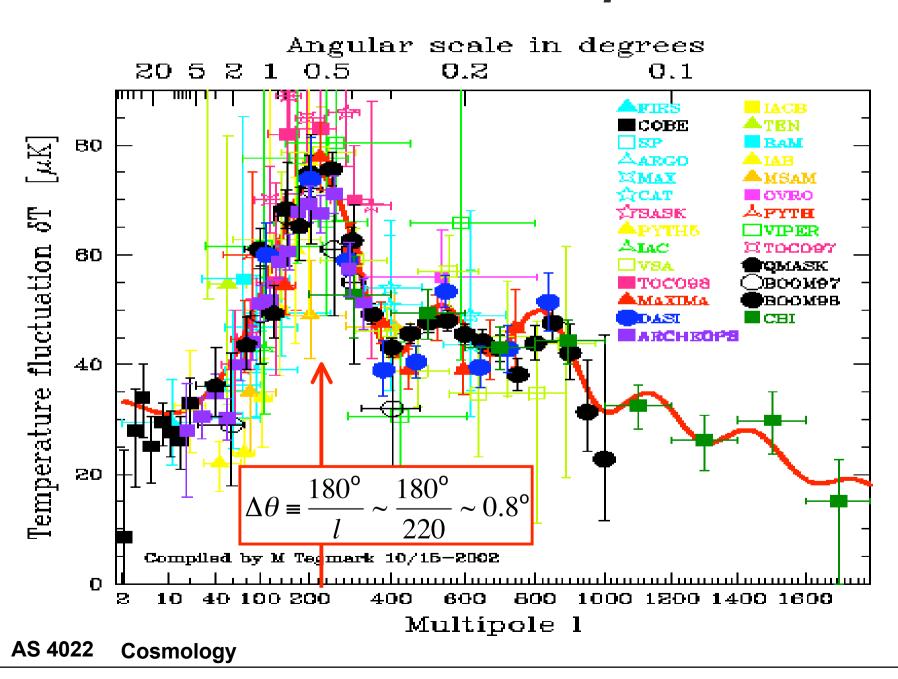
 $\Delta\theta \sim 1^{\circ}$

Snapshot of Universe at z = 1100Cosmology Seeds that later form galaxies.

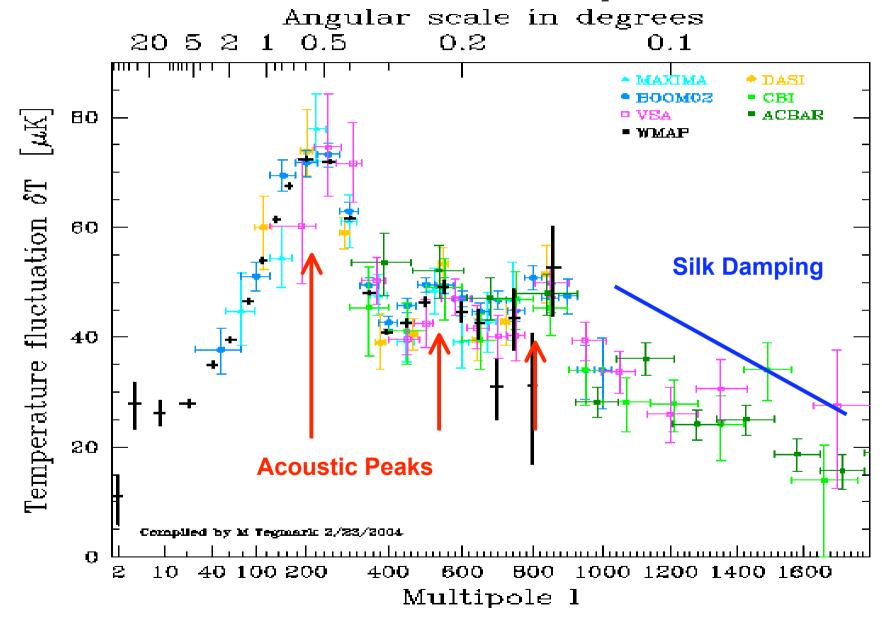
2003 -- WMAP Power Spectrum



2002 - CMB Power Spectrum



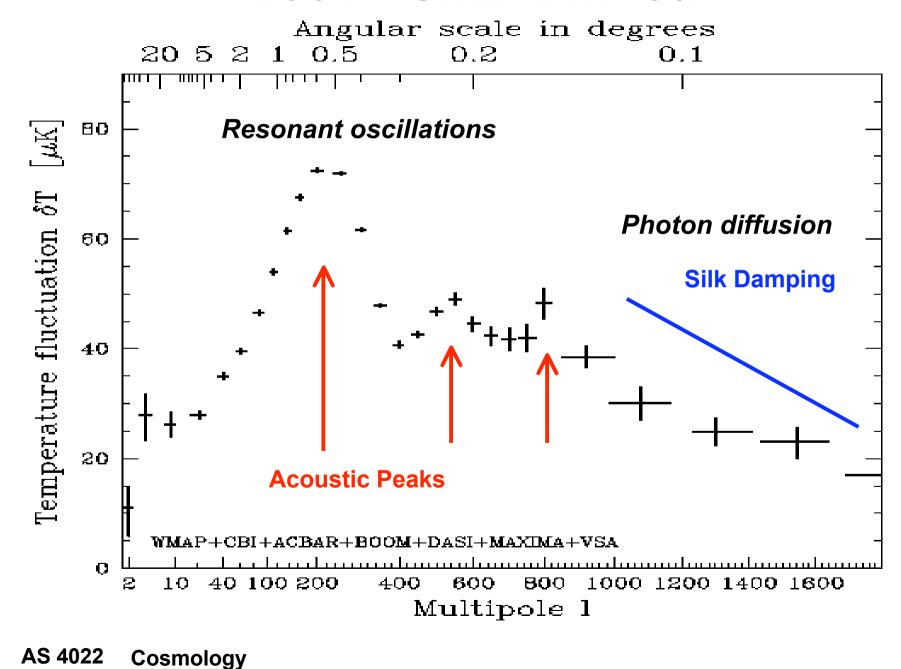
2004 - CMB Power Spectrum



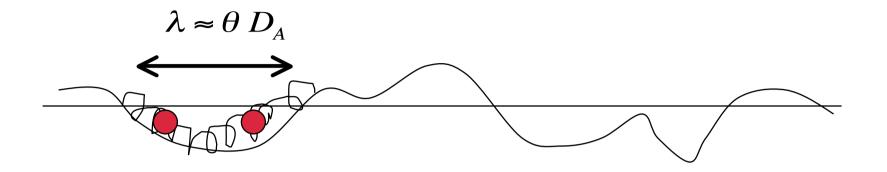
AS 4022

Cosmology

2004 - CMB Binned



Acoustic Oscillations



Dark Matter potential wells - many sizes.

photon-electron-baryon fluid

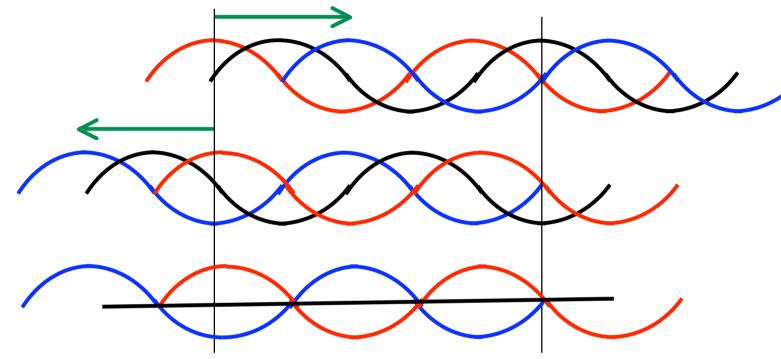
fluid falls into DM wells

photon pressure pushes it out again

oscillations starting at t = 0 (post-inflation)

stopping at z = 1100 (recombination)

Standing Sound Waves



temperature oscillations:

$$c_s = \frac{\lambda}{P} = \frac{\omega}{k} = \frac{c}{\sqrt{3}}$$

$$\Delta T(x,t) = a\cos(\omega t)\cos(kx)$$
 $\omega = \frac{2\pi}{P}$ $k = |\mathbf{k}| = \frac{2\pi}{\lambda}$

$$\Delta T(\mathbf{x}, t) = \sum_{\mathbf{k}} a(\mathbf{k}) \cos(\omega t) \cos(\mathbf{k} \cdot \mathbf{x}) \qquad \langle a(k) \rangle = a_0 \left(\frac{k}{k_0}\right)^{n_s}$$

Resonant Oscillations

size of potential well λ

oscillation period
$$P \approx \frac{\lambda}{c_s}$$

sound speed
$$c_s = \frac{c}{\sqrt{3}}$$

temperature oscillations

$$\Delta T(t) = \Delta T(0) \cos(2\pi t/P)$$

$$\max |\Delta T|$$
 at $t = \frac{nP}{2} \sim \frac{n\lambda}{2c_s}$

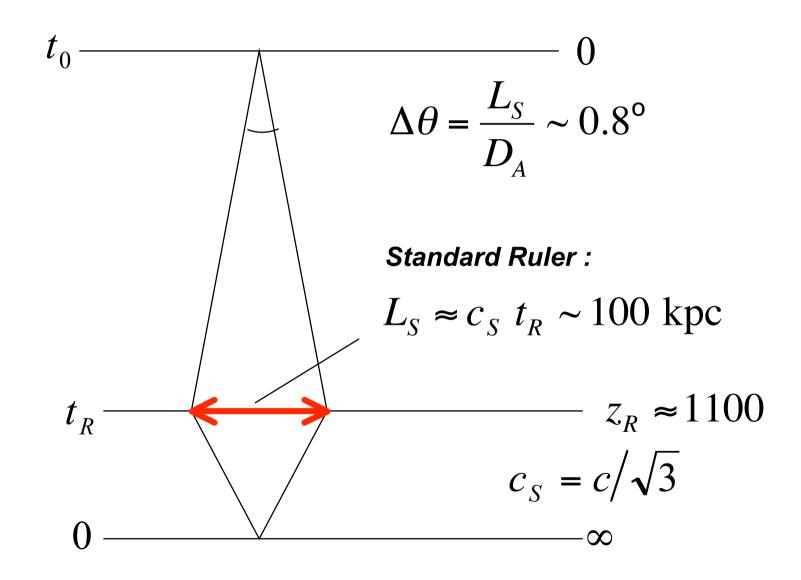
angular size

$$\Delta \theta_n = \frac{\lambda_n}{D_A} = \frac{\Delta \theta_1}{n} \quad \Delta \theta_1 \approx \frac{2c_s t}{D_A} \sim 0.8^{\circ}$$

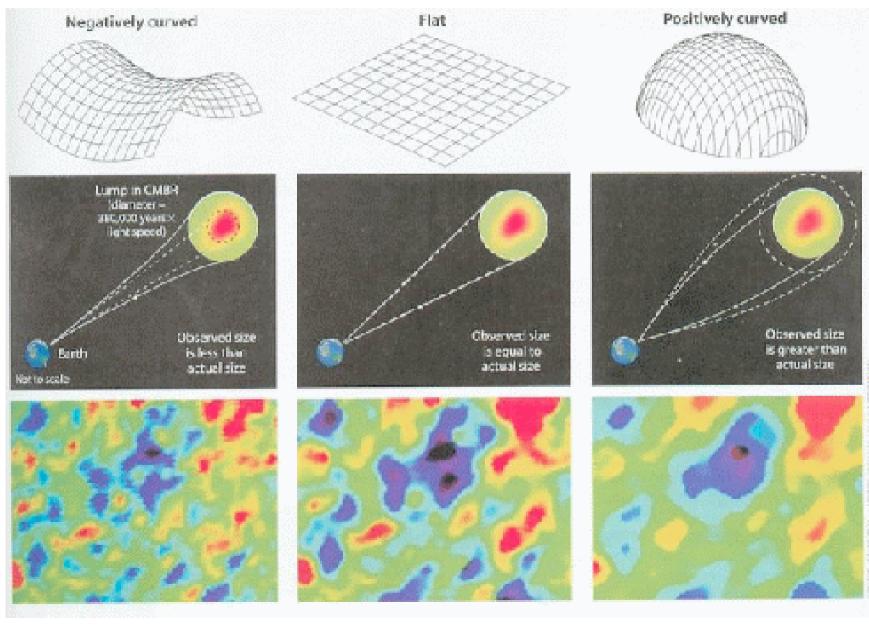
z = 1100 z = 0 $|t \approx P_1/2$ $\lambda_1 \approx 2c_s t$ $\Delta\theta_{\scriptscriptstyle 1}$ $\lambda_2 = \lambda_1/2$ $\Delta\theta_2 = \frac{\Delta\theta_1}{2}$ $\lambda_3 = \lambda_1/3$ $\Delta \theta_3 = \frac{\Delta \theta_1}{2}$

Smaller wells oscillate faster.

Sound Horizon at z = 1100



Angular scale --> Geometry



AS 4022 Cosmology

Sound Horizon at z = 1100

distance travelled by a sound wave

$$c_{S} dt$$

recombination at z = 1100

$$x \equiv 1 + z = \frac{R_0}{R(t)}$$

expand each step by factor $R(t_R)/R(t)$:

$$dt = \frac{-dx}{x H(x)}$$

$$L_S(t_R) = R(t_R) \int_0^{t_R} \frac{c_S dt}{R(t)}$$

$$= \frac{R_0}{1+z} \int_{1+z}^{\infty} \frac{x}{R_0} \frac{c_S dx}{x H(x)}$$

$$dt = - dx / x H(x)$$

$$R(t) = R_0 / x$$

sound speed

$$c_S \approx \frac{c}{\sqrt{3}}$$

$$= \frac{c_S}{(1+z)} \int_{1+z}^{\infty} \frac{dx}{H(x)}$$

H(x) from Friedmann Eqn.

$$=\frac{c_S}{\left(1+z\right)H_0}\int\limits_{1+z}^{\infty}\frac{dx}{\sqrt{x^4\;\Omega_R+x^3\;\Omega_M+\Omega_\Lambda+\left(1-\Omega_0\right)x^2}}$$

$$\approx \frac{c_S}{(1+z)H_0} \int_{1+z}^{\infty} \frac{dx}{\sqrt{x^4 \Omega_R + x^3 \Omega_M}}$$

keep 2 largest terms.

Sound Horizon at z = 1100

$$L_{S}(t_{R}) = \frac{c_{S}}{(1+z)} \int_{1+z}^{\infty} \frac{dx}{H(x)} \approx \frac{c_{S}}{(1+z)H_{0}} \int_{1+z}^{\infty} \frac{dx}{\sqrt{x^{4} \Omega_{R} + x^{3} \Omega_{M}}}$$

$$= \frac{c_{S}}{(1+z)H_{0}\sqrt{\Omega_{R}}} \int_{1+z}^{\infty} \frac{dx}{\sqrt{x^{3}(x+x_{0})}} \qquad x_{0} \equiv \frac{\Omega_{M}}{\Omega_{R}} \approx 3500 \left(\frac{\Omega_{M}}{0.3}\right)$$

$$= \frac{c_{S}}{(1+z)H_{0}\sqrt{\Omega_{R}}} \left(-\frac{2}{x_{0}}\sqrt{1+\frac{x_{0}}{x}}\right)_{1+z}^{\infty}$$

$$= \frac{2c_{S}}{(1+z)H_{0}\sqrt{\Omega_{M}x_{0}}} \left(\sqrt{1+\frac{x_{0}}{1+z}} - 1\right) \qquad c_{S} = \frac{c}{\sqrt{3}}$$

$$= \frac{c}{H_{0}} \frac{2(\sqrt{4.6} - 1)}{1100\sqrt{3} \times 0.3 \times 3500}$$
Figure 10.

Angular Scale measures Ω_0

sound horizon:

angular diameter distance:

$$L_S(z) = \frac{1}{1+z} \int_{1+z}^{\infty} \frac{c_S dx}{H(x)}$$

$$D_A(z) = \frac{R_0 S_K(\chi)}{1+z}$$

$$L_{S}(z) = \frac{1}{1+z} \int_{1+z}^{\infty} \frac{c_{S} dx}{H(x)} \qquad D_{A}(z) = \frac{R_{0} S_{K}(\chi)}{1+z} \qquad \chi = \int_{t}^{t_{0}} \frac{c dt}{R(t)} = \frac{c}{R_{0}} \int_{1}^{1+z} \frac{dx}{H(x)}$$

 $\Omega_{\rm R} = 0.000086$

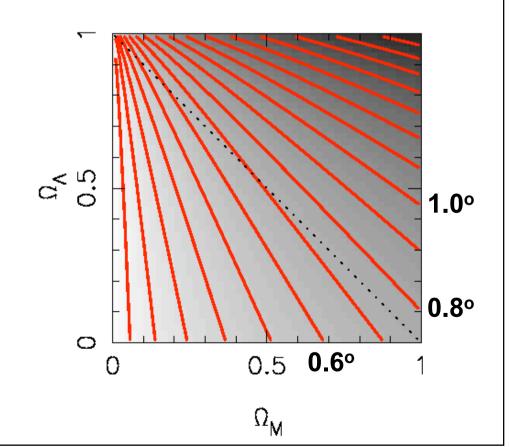
angular scale

$$\theta = \frac{L_S(z)}{D_A(z)} = \frac{\int_{1+z}^{\infty} \frac{c_S \, dx}{H(x)}}{R_0 \, S_k \left(\frac{c}{R_0} \int_{1}^{1+z} \frac{dx}{H(x)}\right)}$$

Angular scale depends mainly on the curvature.

Gives $\theta \sim 0.8^{\circ}$ for flat geometry,

$$\Omega_0 = \Omega_M + \Omega_\Lambda = 1$$



Finer Details: measure Ω_b and Ω_M

Sound speed not constant:

$$c_S(z) = \frac{c}{\sqrt{3(1+R(z))}}$$

$$R(z) = \frac{3 \rho_{\rm b}(z)}{4 \rho_{\rm R}(z)} = \frac{3 \Omega_b (1+z)}{4 \Omega_R}$$

Acoustic peaks not quite equally spaced:

$$l_n = l_A (n + \delta_n)$$

phase shifts

$$\delta_n \approx a_n \left(\frac{r}{0.3}\right)^{0.1}$$
 $a_{1,2,3} \approx 0.267, 0.24, 0.35$

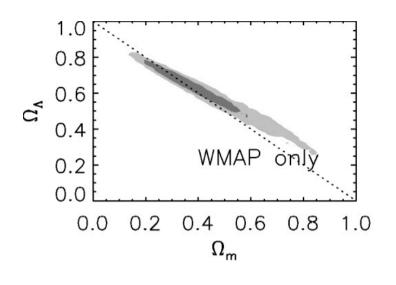
$$r = \frac{\rho_M(z)}{\rho_R(z)} = \frac{\Omega_M (1+z)}{\Omega_R}$$

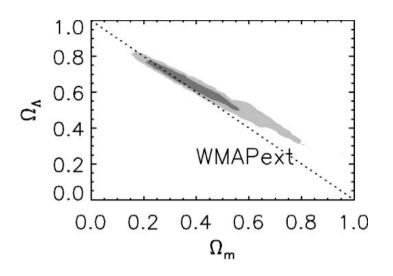
Max Tegmark's CMB Movies

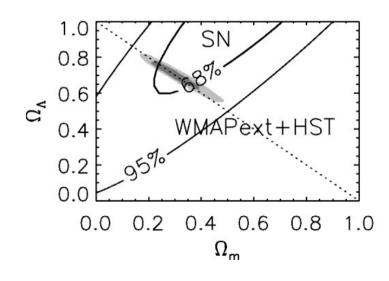
Shows how the **CMB power spectrum** (and the **baryon power spectrum**) depend on the cosmological parameters.

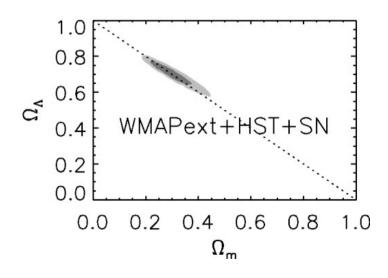
A link to these is available on the course web page.

WMAP parameter constraints



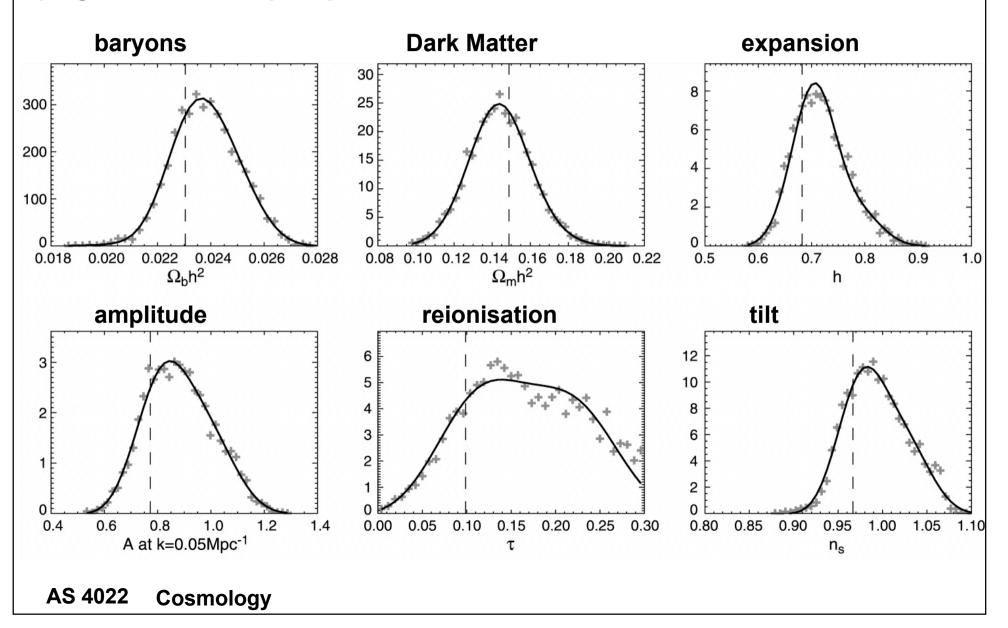




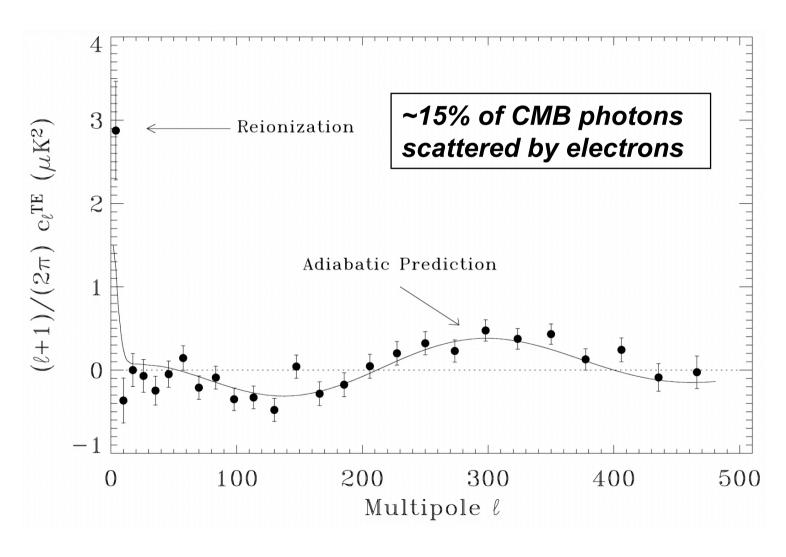


WMAP parameter constraints

Spergel et al. 2003 ApJSup 148,175.



WMAP Polarisation Power Spectrum



Spergel et al. 2003 ApJSup 148,175.

Epoch of Re-Ionisation

UV from first stars re-ionises gas.

Scatters ~15% of CMB photons yielding ~15% polarisation.

WMAP measured this!

Electron scattering optical depth:

$$d\tau = n \, \sigma_T \, dr$$

$$= n_0 \, \left(1 + z \, \right)^3 \, \sigma_T \, c \, dt$$

$$\tau = n_0 \, \sigma_T \, c \, \int_1^{1+z} \frac{x^3 dx}{x \, H(x)}$$

$$= \frac{n_0 \, \sigma_T \, c}{H_0} \int_1^{1+z} \frac{x^2 \, dx}{\sqrt{\Omega_M \, x^3 + \Omega_\Lambda + \left(1 - \Omega_0 \, \right) \, x^2}}$$

$$dt = \frac{-dx}{x H(x)}$$
$$x = 1 + z$$

Thompson cross - section σ_T

electron density today

$$n_0 = \frac{\Omega_b}{m_{\rm H}} \, \frac{3 \, H_0^2}{8 \, \pi \, G} \left(X + \frac{Y}{2} \right)$$

Gives \sim 15% optical depth at z \sim 20

Precision Cosmology

$$h = 71 \pm 3$$

expanding

$$\Omega = 1.02 \pm 0.02$$

flat

$$\Omega_b = 0.044 \pm 0.004$$
 baryons

$$\Omega_M = 0.27 \pm 0.04$$
 Dark Matter

$$\Omega_{\Lambda} = 0.73 \pm 0.04$$
 Dark Energy

$$t_0 = 13.7 \pm 0.2 \times 10^9 \text{ yr}$$

now

$$t_* = 180^{+220}_{-80} \times 10^6 \text{ yr}$$
 $z_* = 20^{+10}_{-5}$ reionisation

$$z_* = 20^{+10}_{-5}$$

$$t_R = 379 \pm 1 \times 10^3 \text{ yr}$$

$$t_R = 379 \pm 1 \times 10^3 \text{ yr}$$
 $z_R = 1090 \pm 1 \text{ recombination}$

(From the WMAP 1-year data analysis)

