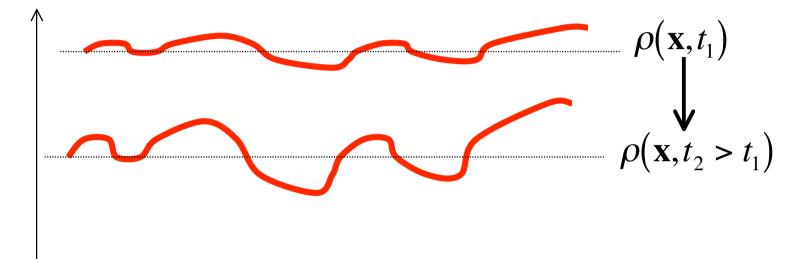
Large Scale Structure

- Galaxies are (biased) tracers of the mass
- "Bubbly" structure observed
 - Voids
 - Walls = edges of voids
 - Filaments = intersections of walls
 - Clusters = intersections of filaments
- Compare with supercomputer simulations.
 - initial density perturbations grow
 - stars / galaxies form when density high enough
- Determine Ω_{M}
 - High $\Omega_{\rm M}$ => faster growth
 - => clusters form at earlier redshifts
 - => stronger clustering today
 - $\Omega_{\rm M} \sim 0.3$ matches observed structure.

Density Perturbations Grow

$$\rho(\mathbf{x},t) = \overline{\rho}(t) \left(1 + \delta(\mathbf{x},t)\right)$$



co-moving spatial coordinate: x

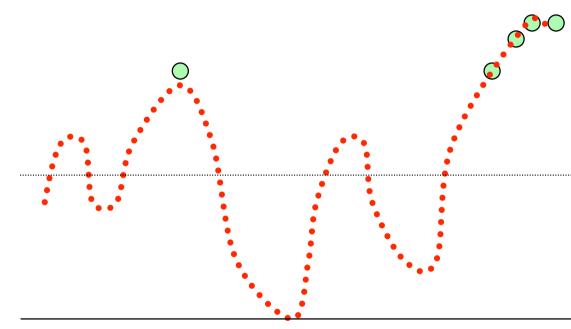
Linear regime:
$$|\delta| < 1$$
 $\delta = \frac{\rho - \rho}{\overline{\rho}}$

$$\delta \propto R(t) \propto \frac{1}{1+z}$$

Biased Galaxy Formation

Non-Linear regime

$$\delta \ge 1$$



Galaxy clusters form in density maxima.

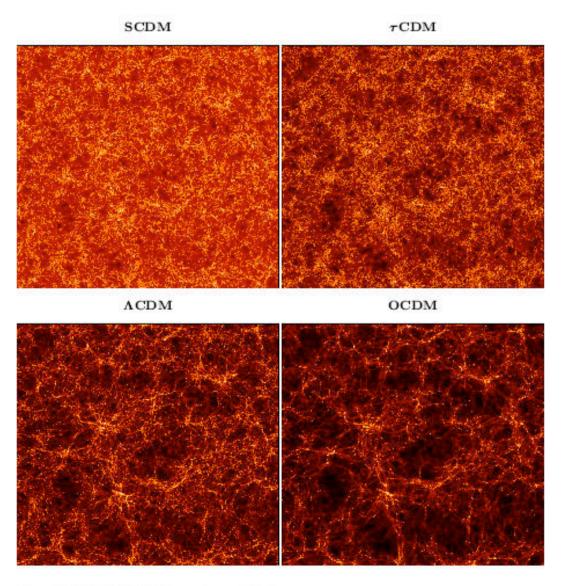
Voids (almost no galaxies) in density minima.

$$\delta_{galaxies} = b \, \delta_{M}$$

b = "bias parameter"

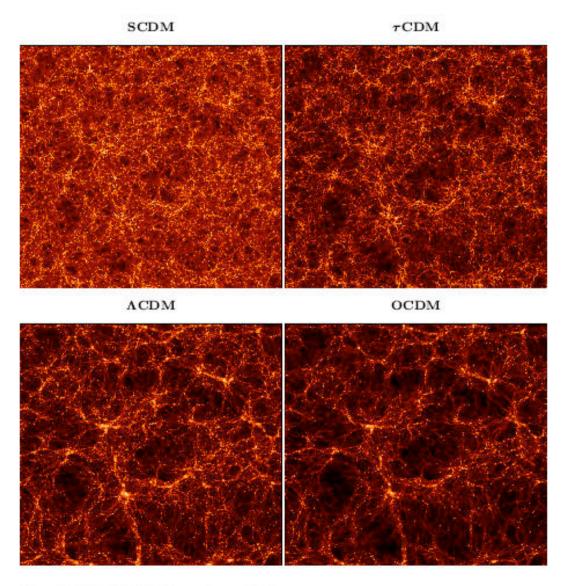
b > 1 --> Galaxies more strongly clustered than matter

Simulations: z = 3



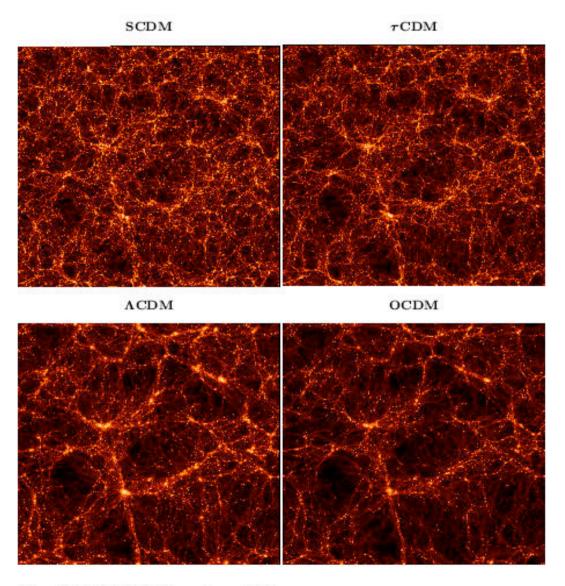
The VIRGO Collaboration 1996

Simulations: z = 1



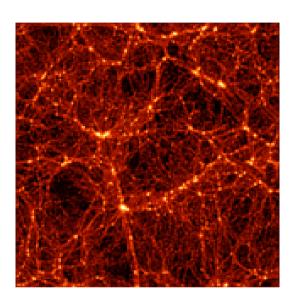
The VIRGO Collaboration 1996

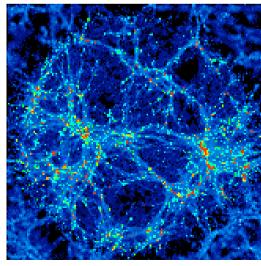
Simulations: z = 0



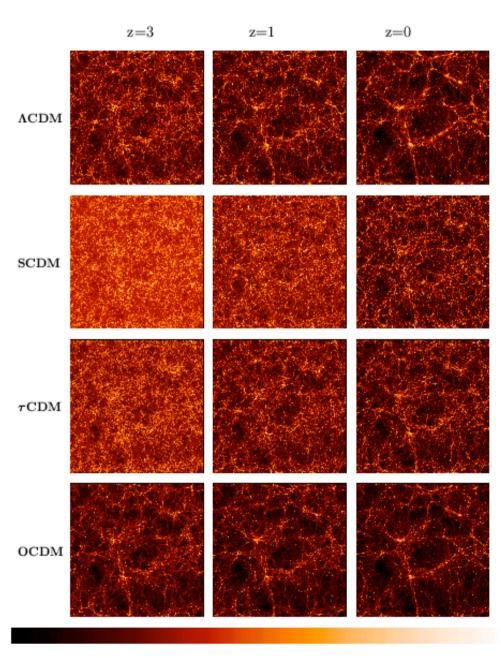
The VIRGO Collaboration 1996

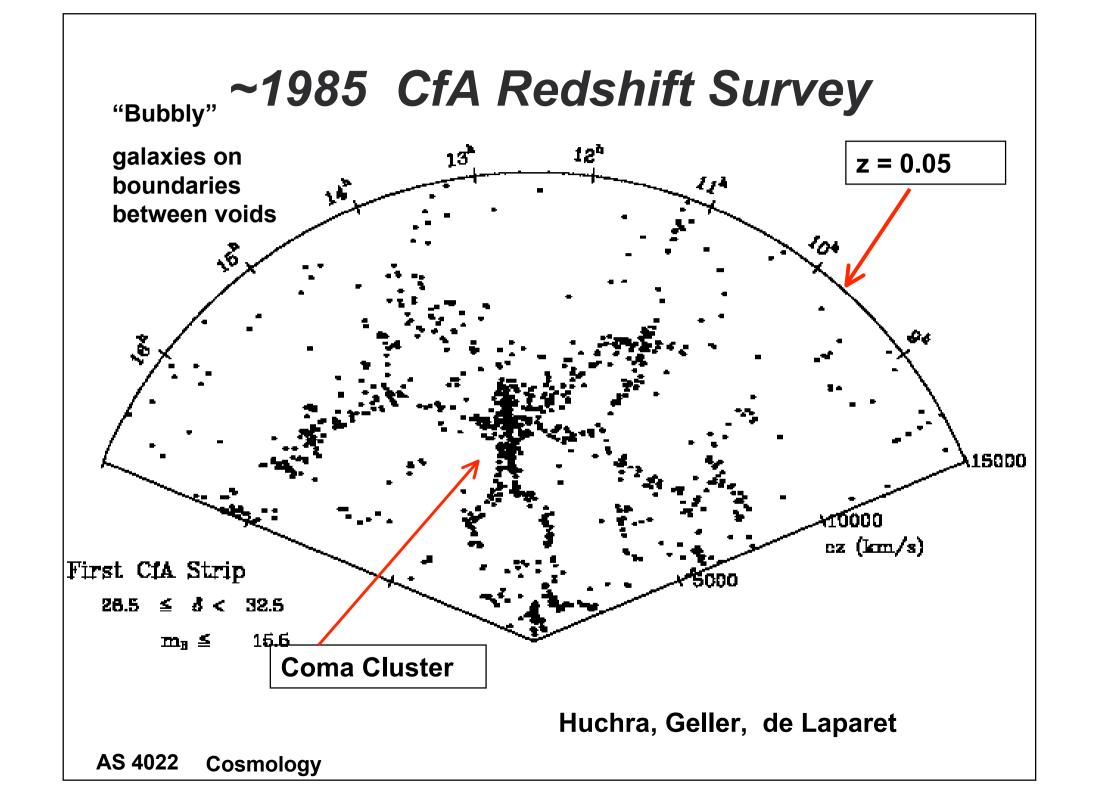
Supercomputer Simulations

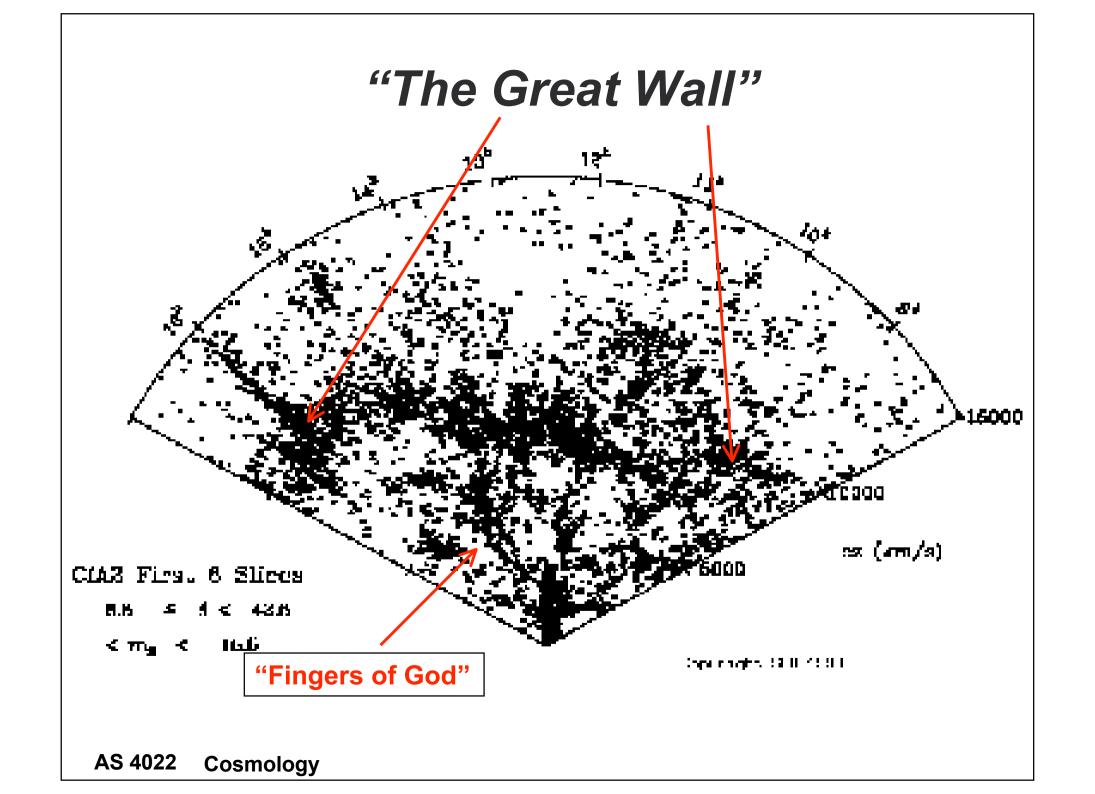


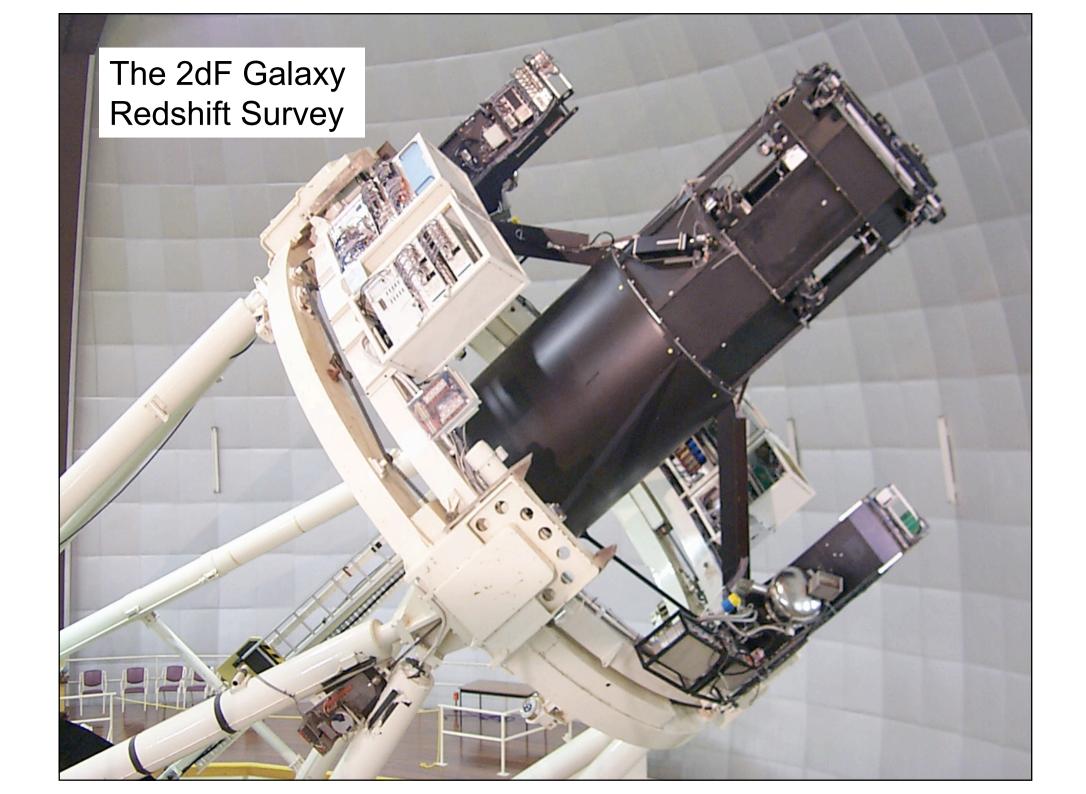


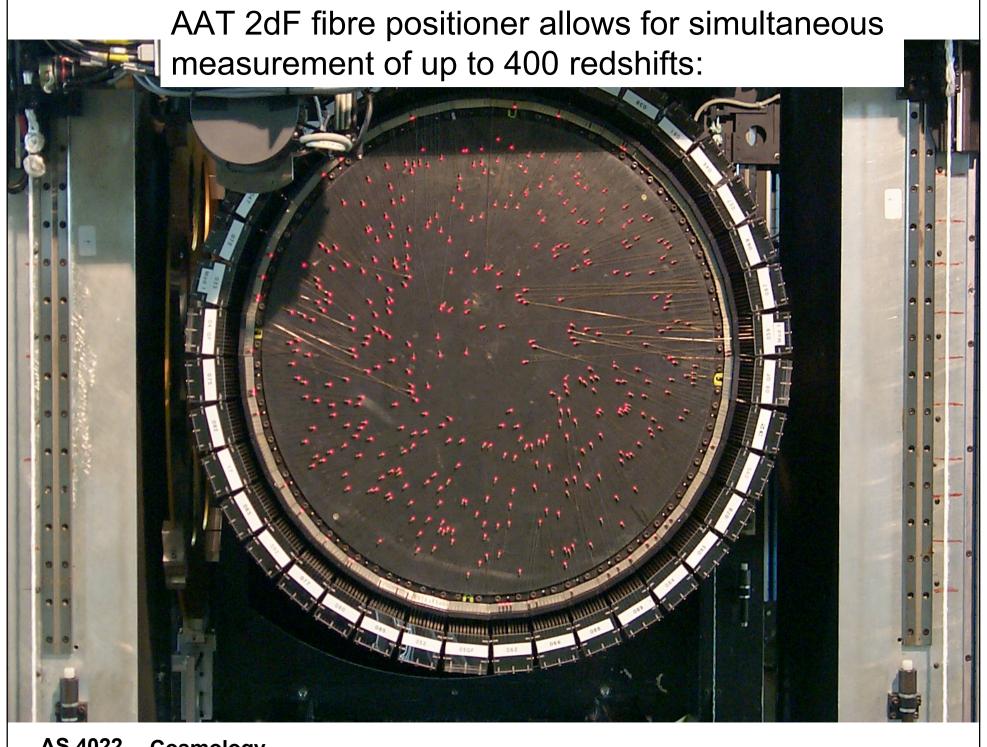
AS 4022 Cosmology

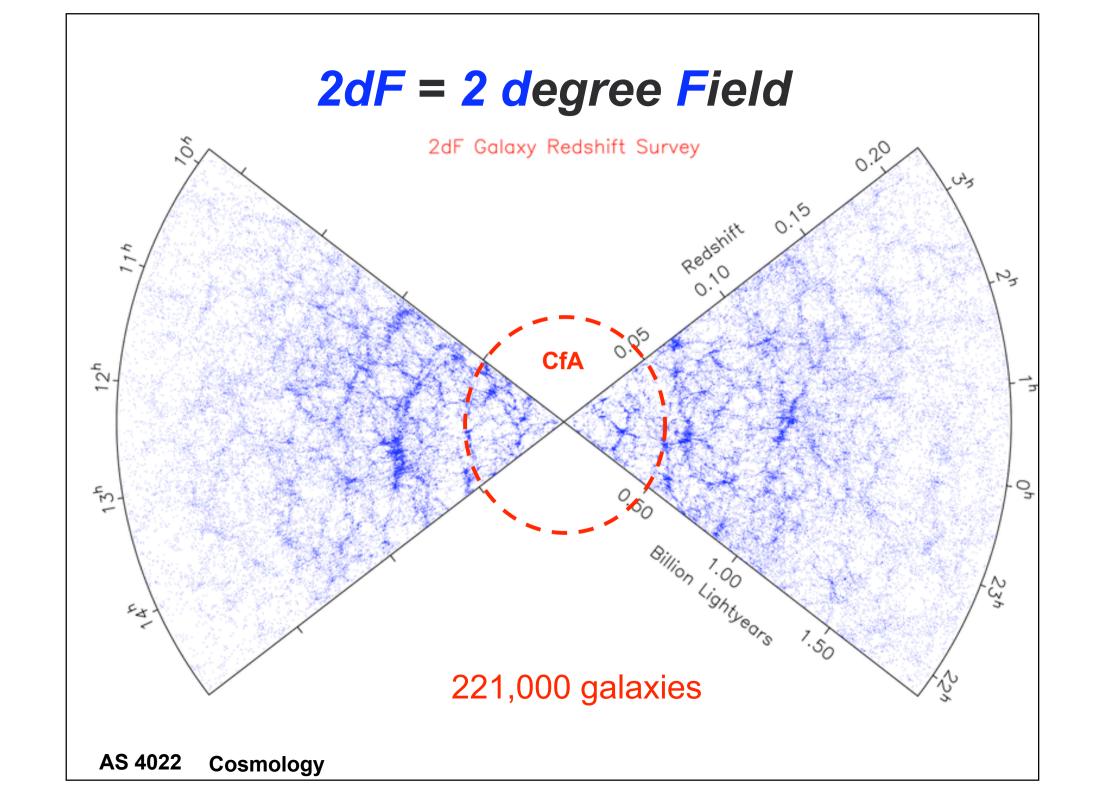












Galaxy Redshift Surveys

Large Scale Structure:

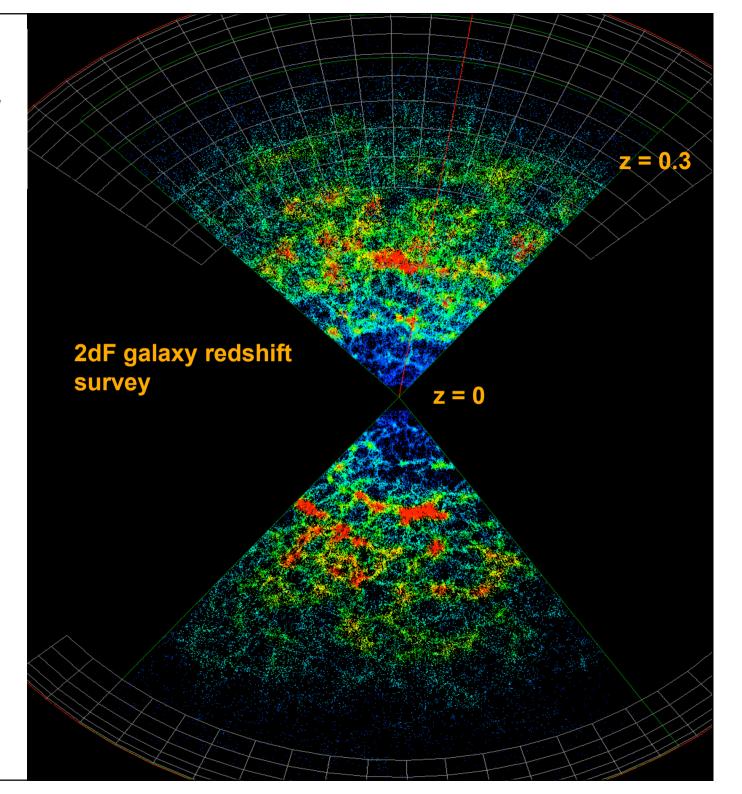
Empty voids

~50Mpc.

Galaxies are in

- 1. **Walls** between voids.
- 2. **Filaments** where walls intersect.
- 3. **Clusters** where filaments intersect.

Like Soap Bubbles!



Theory vs Observations

- Can't directly compare simulations and observations
 - details (exactly where density is high/low) don't matter.
- Amplitude of structure vs size of structure is what matters. Quantify this using:
 - Power Spectrum: P(k) wavenumber $k = 2 \pi / \lambda$
 - 2-point Correlation Function : ξ(r)
- Biased galaxy formation:
 - bias parameter b.
- Initial conditions:
 - Power-law power spectrum for initial amplitude vs scale.
 - Amplitude A, slope n $P_0(k) \sim A^2 k^n$

Fourier Analysis (Parceval's Theorem)

density perturbations

fourier amplitudes $\delta_{\mathbf{k}}$

$$\delta(\mathbf{x}) = \frac{\rho(\mathbf{x}) - \langle \rho \rangle}{\langle \rho \rangle} = \frac{\delta \rho}{\overline{\rho}} \qquad \delta(\mathbf{x}) = \sum_{\mathbf{k}} \delta_{\mathbf{k}} \exp(-i\mathbf{k} \cdot \mathbf{x})$$

$$\delta(\mathbf{x}) = \sum_{\mathbf{k}} \delta_{\mathbf{k}} \exp(-i \mathbf{k} \cdot \mathbf{x})$$

mean

variance

(average over volume V)

$$\langle \delta \rangle = 0$$
 $\langle \delta^2 \rangle = \frac{1}{V} \int \delta^2(\mathbf{x}) d^3\mathbf{x}$

$$= \frac{1}{V} \int \left| \sum_{\mathbf{k}} \delta_{\mathbf{k}} \exp(-i \,\mathbf{k} \cdot \mathbf{x}) \right|^{2} d^{3}\mathbf{x}$$

$$= \frac{1}{V} \int \sum_{\mathbf{k}} \sum_{\mathbf{j}} \delta_{\mathbf{k}} \delta_{\mathbf{j}}^* \exp(-i(\mathbf{k} - \mathbf{j}) \cdot \mathbf{x}) d^3 \mathbf{x}$$

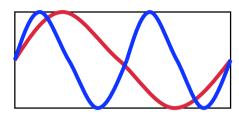
$$= \sum_{\mathbf{k}} \sum_{\mathbf{j}} \delta_{\mathbf{k}} \delta_{\mathbf{j}}^{*} \int \exp(-i(\mathbf{k} - \mathbf{j}) \cdot \mathbf{x}) \frac{d^{3}\mathbf{x}}{V}$$

$$\left\langle \delta^{2} \right\rangle = \sum_{\mathbf{k}} \left| \delta_{\mathbf{k}} \right|^{2}$$

$$\approx \frac{V}{(2\pi)^{3}} \int \left| \delta_{\mathbf{k}} \right|^{2} d^{3} \mathbf{k}$$

1 if k = j

0 otherwise



mode spacing:

$$\lambda_{x} = L_{x} / n$$

$$k_{x} = \frac{2\pi \ n}{L_{x}} = n \ \Delta k_{x}$$

$$\Delta k_{x} = \frac{2\pi}{L_{x}}$$

$$d^3\mathbf{k} = \frac{\left(2\pi\right)^3}{L_x L_y L_z} = \frac{\left(2\pi\right)^3}{V}$$

= k - space volume per mode

Power Spectrum

For isotropic structure (consistent with observations):

power spectrum (average over directions)

$$P(k) = \left\langle \left| \delta_{\mathbf{k}} \right|^2 \right\rangle = \int \int \delta^2(k, \theta, \phi) \frac{\sin \theta \, d\theta \, d\phi}{4\pi} \qquad k = \left| \mathbf{k} \right| = \frac{2\pi}{\lambda}$$

variance of density fluctuations:

$$\langle \delta^2 \rangle = \sum_{\mathbf{k}} |\delta_{\mathbf{k}}|^2 \approx \frac{V}{(2\pi)^3} \int |\delta_{\mathbf{k}}|^2 d^3 \mathbf{k}$$

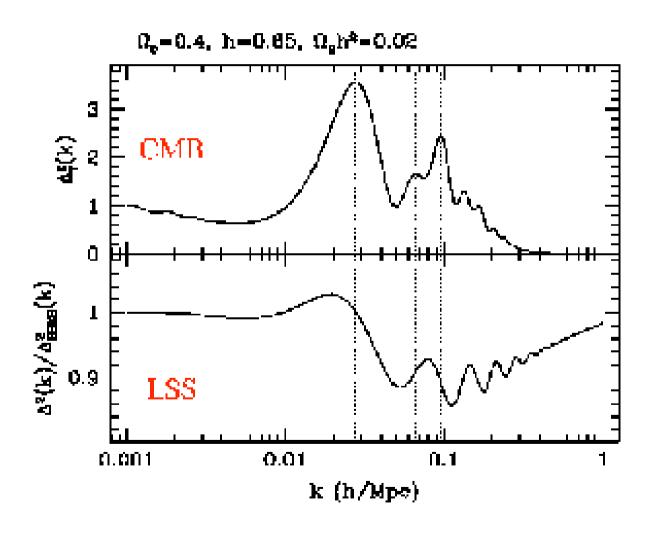
$$= \frac{V}{(2\pi)^3} \int P(k) \, 4\pi \, k^2 dk = \frac{V}{2\pi^2} \int P(k) \, k^2 dk$$

dimensionless power spectrum:

$$\Delta^{2}(k) = \frac{d\langle \delta^{2} \rangle}{d \ln k} \approx \frac{V}{2\pi^{2}} k \frac{d}{dk} \left(\int P(k) k^{2} dk \right) = \frac{V}{2\pi^{2}} k^{3} P(k)$$

Predicted Power Spectra

Independent constraints from CMB and Large-Scale Structure

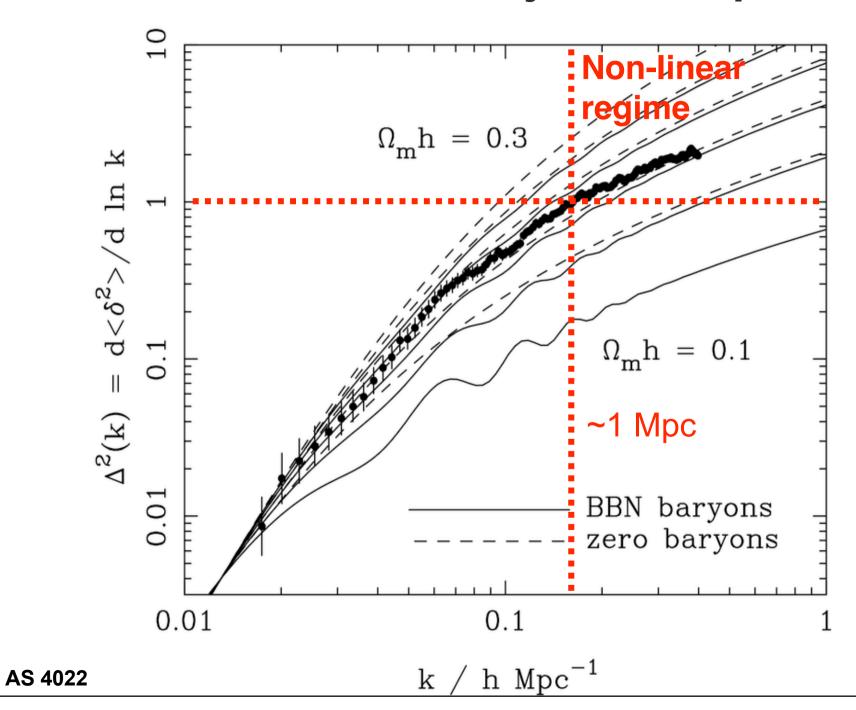


CMB and LSS out of phase:

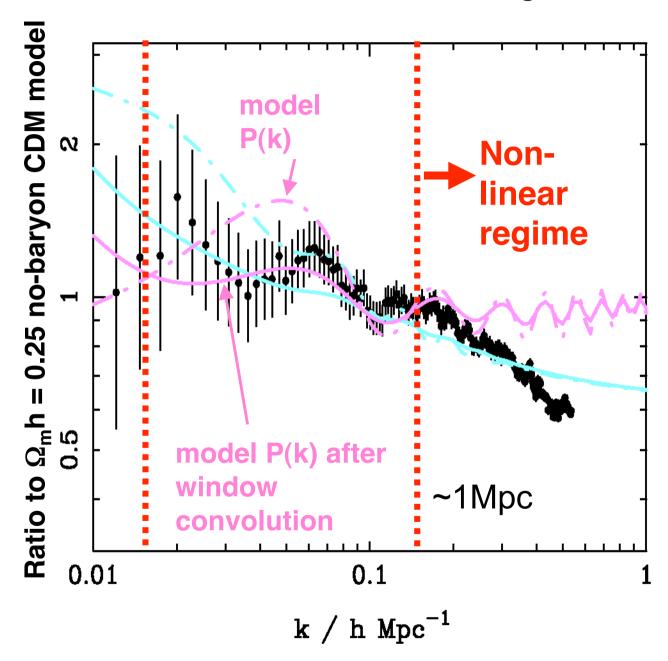
'velocity overshoot'

LSS amplitude smaller than CMB

CDM Model Fits to Galaxy Power Spectrum



CDM Model Fits to Galaxy Power Spectrum



Fit model CDM P(k) (with n=1) after convolution with survey window function.

Parameters:

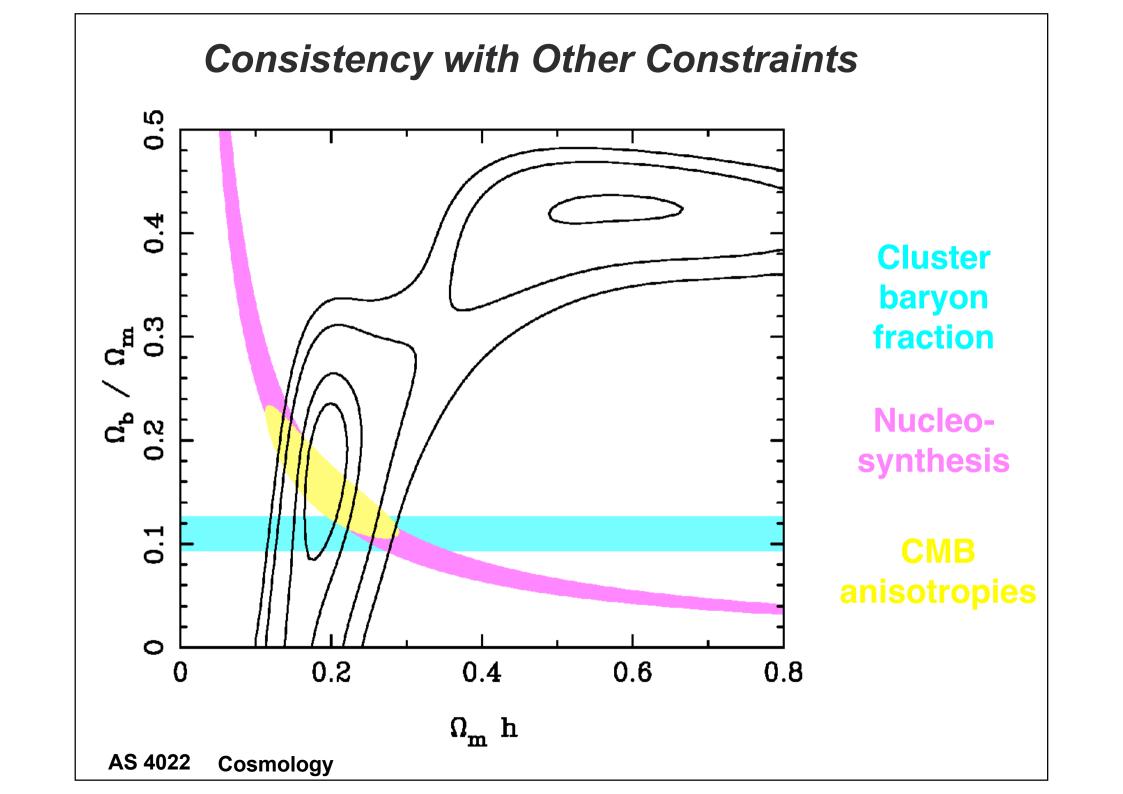
(1)
$$\Omega_{\rm m}$$
 h

(2)
$$\Omega_{\rm b}/\Omega_{\rm m}$$

(3) h (marginalise)

Window flattens P(k) and depresses baryon features.

Fits limited to 0.015 < k < 0.15.



Galaxy-Galaxy Correlation Function

correlation function = fourier transform of power spectrum

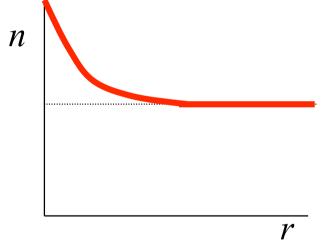
$$\xi(\mathbf{r}) \equiv \langle \delta(\mathbf{x}) \delta(\mathbf{x} + \mathbf{r}) \rangle = \sum_{\mathbf{k}} |\delta_{\mathbf{k}}|^2 \exp(-i \mathbf{k} \cdot \mathbf{r})$$

radial correlation function

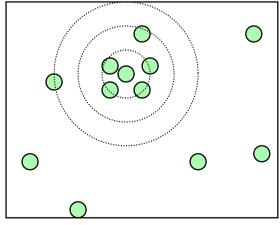
$$\xi(r) = \langle \xi(\mathbf{r}) \rangle \approx \left(\frac{r}{8 \text{ Mpc}}\right)^{-1.8}$$

measures galaxy clustering

$$n(r) = n_0 \left(1 + \xi(r) \right)$$



Galaxy counts at separation *r* <u>larger</u> than expected for random distribution.



Power-Law Models

power - law power spectrum

$$P(\mathbf{k}) = \left\langle \left| \delta_{\mathbf{k}} \right|^{2} \right\rangle = P_{0} \left(\left| \frac{k}{k_{0}} \right| \right)^{n}$$

$$n =$$
 "tilt"

 $n = +1 \implies$ "scale - invariant"

variance after smoothing on scale r

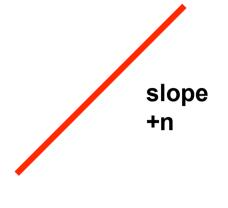
= sum of power for $k = |\mathbf{k}| \le k_{\text{max}} = 2\pi/r$

$$\langle \delta^2 \rangle = \sum_{\mathbf{k}} P(\mathbf{k}) \propto \int_{0}^{k_{\text{max}}} k^n \left(4\pi \ k^2 dk \right) \propto k_{\text{max}}^{n+3} \propto r^{-(n+3)}$$

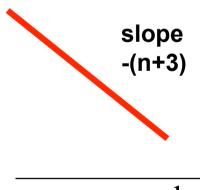
$$\xi(r) = \left(\frac{r}{r_0}\right)^{-\gamma}$$
 $r_0 \approx 8 \text{ Mpc}$ $\gamma = n + 3 \approx 1.8 \rightarrow n \approx -1.2$

 $\log \delta$

 $\log \xi$



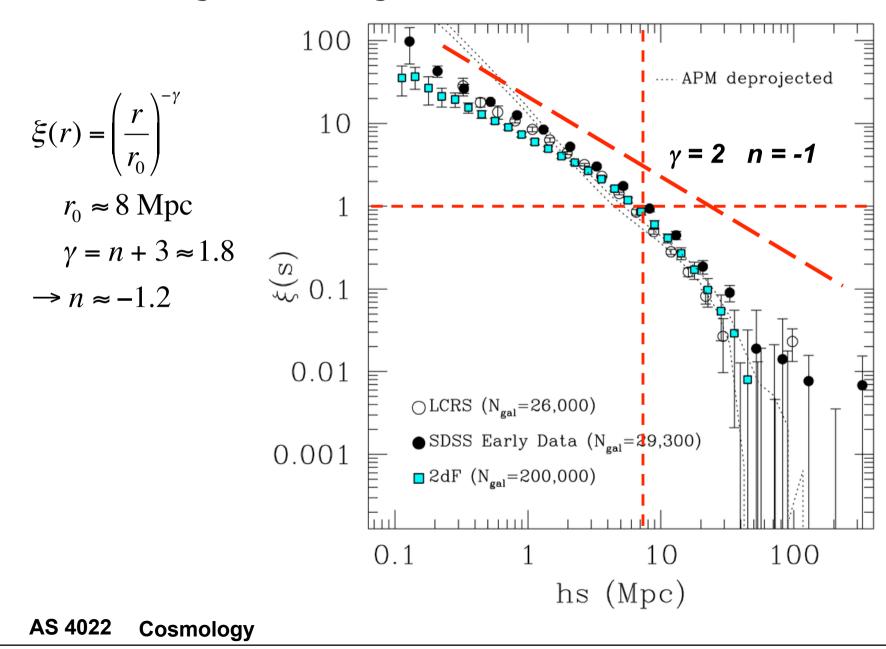
 $\log k$



 $\log r$

Easier to derive γ = 1.8 from 2-point correlation function.

Galaxy-Galaxy Correlation Function



2-D Correlation Function

angular separation

$$\sigma \equiv \frac{\Delta \theta}{D_{\scriptscriptstyle A}}$$

radial separation

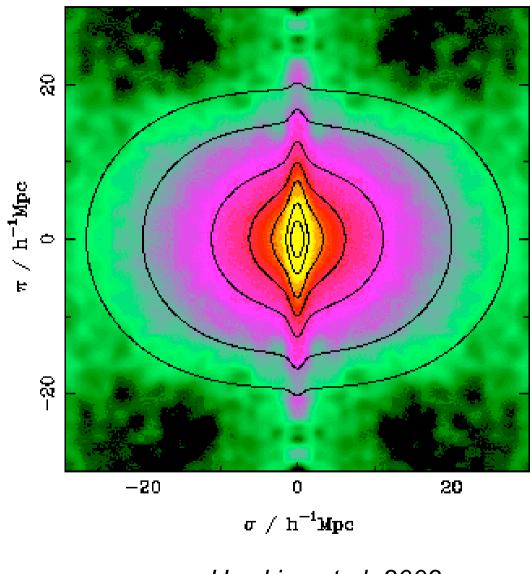
$$\pi = \frac{c \Delta z}{H_0}$$

2 – point correlation function

 π

 $\xi(\sigma,\pi)$

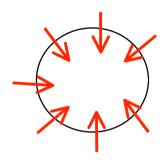
Why flattened ?

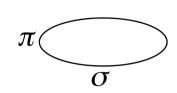


Hawkins et al. 2002

Redshift Distortions

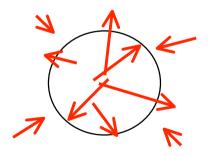
1. Kaiser effect:

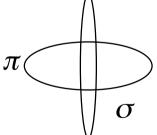


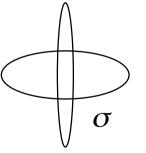


Infall velocities reduce π

2. "Fingers of God"

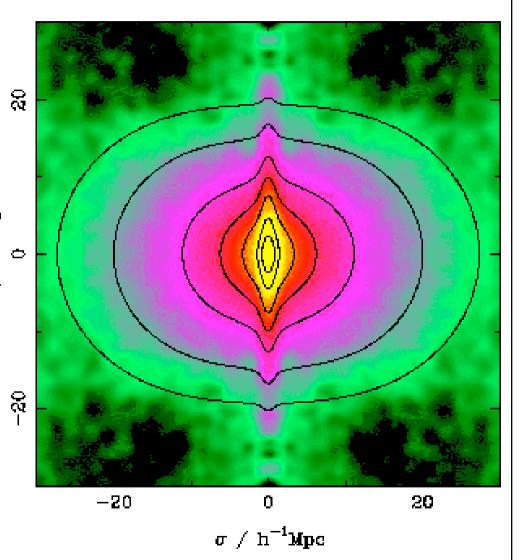






Virialised cluster cores

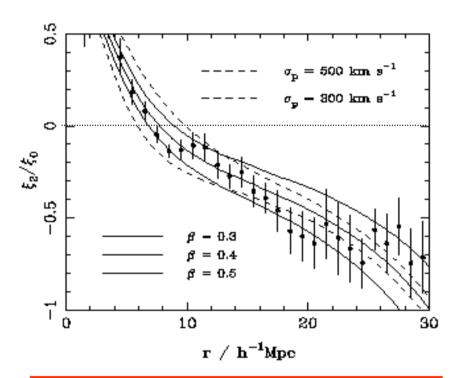
$$V \sim \left(\frac{G M_c}{r_c}\right)^{1/2}$$



Hawkins et al. 2002

Kaiser Effect

Flattening vs size of $\sigma - \pi$ contours

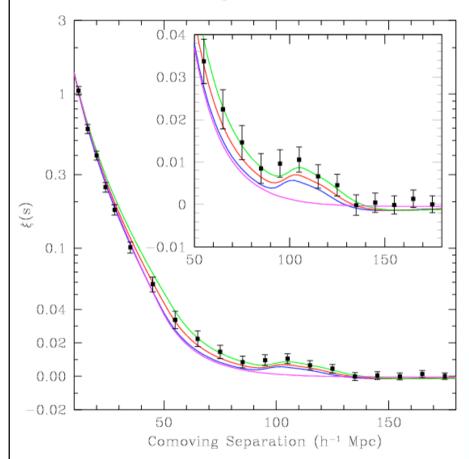


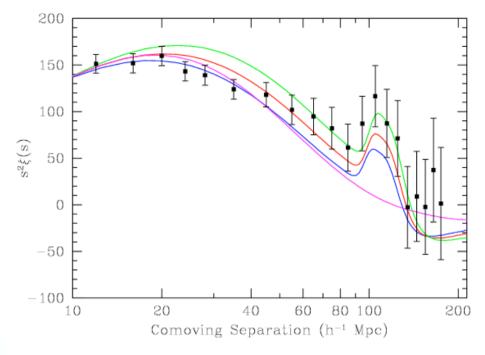
$$\beta = \frac{\Omega_M^{0.6}}{b} = 0.43 \pm 0.07$$

b = bias parameter > 1

-20 $\sigma / h^{-1}Mpc$ / km s⁻¹ 200 0.2 0.4 0.68.0 σ_p = dispersion of galaxy peculiar velocities.

Baryon Acoustic Oscillations





SDSS = Sloan Digital Sky Survey

Eisenstein et al. 2001.

