
Lecture 16

Relic Neutrinos

Below Threshold: k T << m c²

 $kT \ll mc^2$

Photons in the tail of the blackbody photon spectrum have enough energy to create pairs.

Below Threshold:
$$k T << mc^{2}$$

 $E = (p^{2}c^{2} + m^{2}c^{4})^{1/2} \quad kT << mc^{2} \qquad \frac{E}{kT} \Rightarrow \frac{mc^{2}}{kT} + \frac{p^{2}}{2mkT} = \frac{mc^{2}}{kT} + y^{2}$
Particle density:
 $n \Rightarrow \frac{g}{(2\pi h)^{3}} \int \frac{4\pi p^{2} dp}{\exp(E/kT)} = \frac{4\pi g}{(2\pi h)^{3}} (2mkT)^{3/2} e^{\frac{-mc^{2}}{kT}} \int_{0}^{\infty} y^{2} e^{-y^{2}} dy$

 $\pi^{^{1/2}}$

4

Energy density: $\varepsilon \Rightarrow mc^2 n$

Pressure : $P \Rightarrow n k T << \varepsilon$

Entropy:
$$\frac{s}{k} = \frac{\varepsilon + P}{kT} \Longrightarrow \left(\frac{mc^2}{kT} + 1\right)n$$

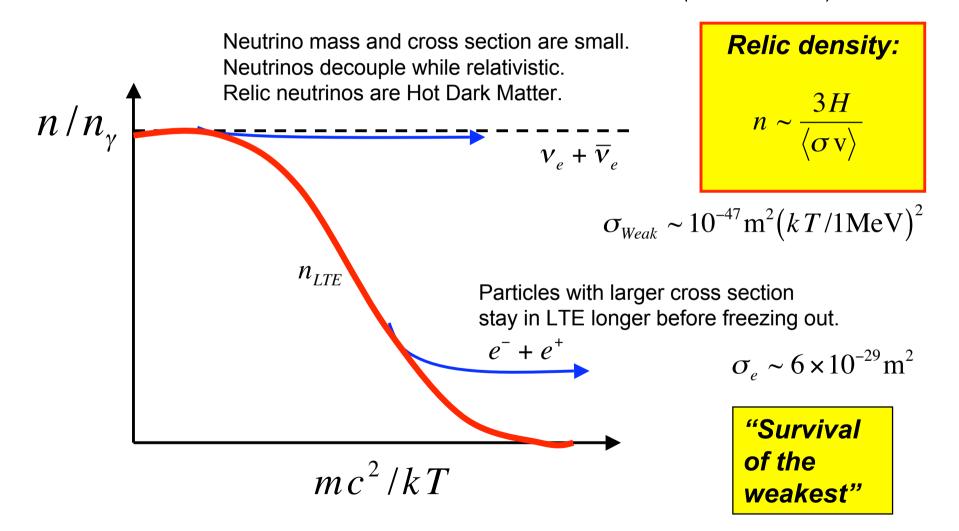
Freeze-Out (Decoupling)

Particle-antiparticle pairs stay in equilibrium with photons by Pair creations:

and

$$\begin{array}{rcl} \gamma + \gamma & \twoheadrightarrow & A + A \\ A + \overline{A} & \twoheadrightarrow & \gamma + \gamma \end{array}$$

Annihilations:


Creation rate dies below **threshold**, when kT << mc².

Annihilation rate dies during freeze-out,

when **collision time** >> **expansion time**.

Freeze-Out (Decoupling)

Particle density evolution : $\dot{n} + 3Hn = -\langle \sigma v \rangle (n^2 - n_{LTE}^2)$

WIMPS as Cold Dark Matter

WIMP = Weakly Interacting Massive Particle:

$$\sigma_{Weak} \sim 10^{-43} \text{ cm}^2 (kT/1\text{MeV})^2$$
 $\sigma_{\text{Thompson}} \sim 6 \times 10^{-25} \text{ cm}^2$

Freeze-out when $kT \sim mc^2$:

$$\frac{H}{\mathrm{s}^{-1}} \sim \frac{1\mathrm{s}}{t} \sim \left(\frac{kT}{\mathrm{MeV}}\right)^2 \sim \left(\frac{mc^2}{\mathrm{MeV}}\right)^2$$

Number density at freeze-out :

$$n \sim \frac{H}{\langle \sigma \mathbf{v} \rangle} \sim \frac{1}{\langle \sigma \mathbf{v} \rangle t}$$

Number density today :

$$n_0 = \frac{n}{(1+z)^3} = n \left(\frac{T_0}{T}\right)^3$$

$$\Omega = \frac{m n_0}{\rho_c} = \frac{m c^2}{\rho_c c^2 \langle \sigma v \rangle \times 1s} \left(\frac{kT}{MeV}\right)^2 \left(\frac{kT_0}{kT}\right)^3$$
$$= \frac{\left(2 \times 10^{-4} \text{ eV}\right)^3}{\left(5200 \text{ eV cm}^{-3}\right) \langle \sigma v/c \rangle \left(3 \times 10^{10} \text{ cm}\right) \left(10^6 \text{ eV}\right)^2}$$
$$= \left(\frac{5 \times 10^{-38} \text{ cm}^2}{\langle \sigma v/c \rangle}\right)$$

Neutrino Decoupling

Annihilation of pairs releases energy. Interactions share this out among remaining (lighter) particles.

Neutrino interactions are weak (no EM charge). Decouple from LTE just above the corresponding lepton threshold: $T_{\tau} = 10^{13.3} K$ $T_{\mu} = 10^{12.1} K$ $T_{e} = 10^{9.7} K$ Neutrinos take no share of the e⁺ e⁻ annihilation energy.

Entropy conserved:
$$s \propto g_{\text{eff}} T^3 = \left(\frac{T_{\gamma}(\text{before})}{T_{\gamma}(\text{after})}\right) = \left(\frac{g(\text{after})}{g(\text{before})}\right)^{1/3} = \left(\frac{4}{11}\right)^{1/3}$$

$$\frac{g(\gamma)}{g(\gamma + e^+ + e^-)} = \frac{2}{2 + \frac{7}{8}(2 + 2)} = \frac{4}{11}$$

Relic neutrino temp lower than photon temp:

$$\frac{T_{\nu}}{T_{\gamma}} = \left(\frac{4}{11}\right)^{1/3} = \frac{1.945 \ K}{2.725 \ K}$$

Relic Neutrinos

Today: Neutrino temp lower than photon temp:

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} = 1.95 \ K$$

3 neutrino types ($e \ \mu \ \tau$) and anti-neutrinos.

Neutrinos are left-handed fermions: $g(v) = 1 \times (7/8)$.

Neutrino contribution to radiation energy density today:

$$\frac{\varepsilon(3(\nu+\bar{\nu}))}{\varepsilon(\gamma)} = 6 \times \frac{g(\nu)}{g(\gamma)} \left(\frac{T(\nu)}{T(\gamma)}\right)^4 = 6 \times \frac{1}{2} \times \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} = 0.68$$

Although not detected, the 1.95K neutrino background makes a significant contribution to the radiation energy density today.

$$\begin{split} \Omega_{\gamma} &= 5 \times 10^{-5} \quad z_{M\gamma} = \Omega_{M} / \Omega_{\gamma} \approx 6000 \\ \Omega_{\nu} &= 3 \times 10^{-5} \\ \Omega_{R} &= 8 \times 10^{-5} \quad z_{MR} = \Omega_{M} / \Omega_{R} \approx 3500 \end{split}$$

Relic Neutrinos as Dark Matter

Number density of relic neutrinos :

$$n(v + \overline{v}) = \frac{3}{4} \left(\frac{T_v}{T_{\gamma}}\right) n_{\gamma} = \frac{3}{4} \times \frac{4}{11} \times \frac{411}{\text{cm}^3} = \frac{113}{\text{cm}^3}$$

If neutrino mass is $m_v > k T_0 \sim 10^{-3.6} \text{ eV}$ then non-relativistic (Cold) Dark Matter today.

Neutrino mass needed to account for Dark Matter :

$$\Omega_{v} h^{2} = \frac{\sum m_{i}}{93.5 \text{ eV}} = \left(\frac{\sum m_{i}}{11.9 \text{ eV}}\right) \left(\frac{\Omega_{v}}{0.26}\right) \left(\frac{h}{0.7}\right)^{2}$$

Experimental limits on neutrino masses:

$$v_e \le 2.2 \text{ eV}$$

 $v_\mu \le 0.17 \text{ MeV}$
 $v_\tau \le 15 \text{ MeV}$

Neutrino Masses

Neutrino oscillations => neutrino mass:

each type (e $\mu\,\tau\,$) is a mix of 3 mass states ($m_1\,m_2\,m_3$) travel time depends on mass interference,oscillation between types

Solar neutrino problem solved:

2/3 of solar neutrinos change type enroute to Earth.

Neutrinos from cosmic ray showers

change type enroute thru the Earth.

Oscillation wavelength depends on energy difference:

$$E = \left(p^2 c^2 + m^2 c^4\right)^{1/2} = pc \left(1 + \frac{m^2 c^2}{p^2}\right)^{1/2} \approx pc \left(1 + \frac{m^2 c^2}{2p^2}\right) = pc + \frac{m^2 c^3}{2p}$$
$$E_1 - E_2 \propto m_1^2 - m_2^2 \equiv \Delta(m_{12})^2$$

Experimental limits: $\Delta(m_{12})^2 = 8.0 \times 10^{-5} \text{eV}^2$ $\Delta(m_{23})^2 = 2.5 \times 10^{-3} \text{eV}^2$