

Deuterium Bottleneck

Note:

- D has the lowest binding energy (2.2 MeV)
 (D easy to break up)
- Nuclei with A > 2 can't form until D is produced.
 (would require 3-body collisions)

→ Deuterium bottleneck

Nucleosynthesis is delayed until D forms.
Then nuclei immediately form up to ⁴He.

⁴He + Traces of Light Elements

The main problem: ⁴He very stable, 28 MeV binding energy. Nuclei with A = 5 are unstable!

Further fusion is rare (lower binding energies): ³He⁺⁺+⁴He⁺⁺ \rightarrow ⁷Li⁺⁺⁺ + e⁺ + γ ³He⁺⁺+⁴He⁺⁺ \rightarrow ⁷Be⁴⁺ + γ ⁷Be⁴⁺ + $n \rightarrow$ ⁷Li⁺⁺⁺ + p⁷Li⁺⁺⁺ + $p \rightarrow 2$ ⁴He⁺⁺

In stars, fusion proceeds because high density and temperature overcomes the ⁴He binding energy.

