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1 Outline

• Newton’s Laws of Motion and Gravity: successes and shortcomings.

• No ether, but what would Michelson and Morley have concluded if they did the experiment in the vertical.

• Special Relativity: how to include gravity.

• Curvilinear coordinates: accelerating observers in flat space in the absence of gravity. Mach both right and wrong.

• Newton’s Laws of Motion in an accelerating coordinate system in the absence of gravity.

• Need for Levi-Civita connection (Christoffel symbols). Role of metric. Geodesics. Equivalence Principle.

• Riemann curvature. Examples of curved spaces.

• Newton’s Laws of Motion in an accelerating coordinate system in the presence of gravity.

• Newton’s Law of Gravity in an accelerating coordinate system in the presence of gravity.

• v2/c2 gravitational corrections to Newton’s Law of Gravity.

• Einstein Equations and gravitational Poisson equation in an accelerating coordinate system.

• Exact all order Schwarzschild solution and black holes.

• Einstein gravity: successes and shortcomings.

• The dark matter problem.

• The dark energy problem.

• The quantum gravity problem.

• Does gravity know about quantum mechanics: Chandrasekhar mass, Cosmic Microwave Background.

• Colella-Overhauser-Werner Experiment.

• Where did the zero-point energy go?
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2 Newton’s Laws of Motion and Gravity

Newton’s Laws of Motion

• (1) constant velocity even if no force. The first law of modern physics, and not just chronologically but also founda-
tionally.

• (2) if force then F = ma.

• (3) action and reaction equal and opposite.

• First law replaces Aristotle F = 0 implies v = 0.

• Second law requires force even if only a change in direction of velocity and no change in magnitude. Thus circular
motion about a center requires a force in direction of change in velocity, i.e. force toward center not along tangent.
Ball on a string or planetary orbits. If we replace v by v + v0 where v0 is a time independent constant, then still have
F = ma. Galilean invariance.

• Third law is conservation of momentum, which generalizes to inelastic processes such as photon or graviton emission.

Figure : (a) A particle is moving in a circle at a constant speed, with position and velocity vectors at times  and . (b)
Velocity vectors forming a triangle. The two triangles in the figure are similar. The vector  points toward the center of the circle
in the limit 

We can find the magnitude of the acceleration from

The direction of the acceleration can also be found by noting that as t and therefore  approach zero, the vector  approaches a
direction perpendicular to . In the limit  is perpendicular to . Since  is tangent to the circle, the acceleration 
points toward the center of the circle. Summarizing, a particle moving in a circle at a constant speed has an acceleration with
magnitude

The direction of the acceleration vector is toward the center of the circle (Figure ). This is a radial acceleration and is called the
cceennttrriippeettaall  aacccceelleerraattiioonn, which is why we give it the subscript . The word cceennttrriippeettaall comes from the Latin words cceennttrruumm
(meaning “center”) and ppeetteerree  (meaning to seek”), and thus takes the meaning “center seeking.”
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Newton’s Law of Gravity

F = ma =
mMGN

r2
â, â =

a

a
. (2.1)

Recognizes an ordered phenomenon in nature. Universal, all systems use same GN .

For motion of a particle falling toward the center of the earth, mass of particle drops out and Galileo’s Law

that all particles fall with same acceleration is recovered. However Newton was concerned that maybe law

should be

F = mia =
mgMGN

r2
â (2.2)

with inertial mi and gravitational mg, and then mass would not drop out. If masses drop out we have

a =
MGN

r2
â. (2.3)

If we know GN (measured by Cavendish) can determine mass of the earth M⊕ and the mass of the sun M�.

Experiment (Eotvos) showed that inertial mi and gravitational mg are equal. A key signpost for Einstein.
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Successes and Shortcomings

For circular motion a = v2/r = MGN/r
2 toward the sun. Like ball on a string, but no string. Then get

Kepler’s Laws; Orbits are ellipses with sun at a focus of ellipse, v2 = M�GN/r, equal areas in equal times.

T 2 = 4πr3/M�GN . Replaces Ptolemy.

Keplerian expectation for planetary orbital velocities – Mercury and Uranus problems
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The concern of Mach

Consider

ẍ = 0, (2.4)

in an inertial frame.

Set

x′ = x +
1

2
gt2, (2.5)

then

ẍ′ = g (2.6)

in a noninertial frame.

Mach: local physical laws are determined by the large-scale structure of the universe, i.e. interaction between

local and global fixes inertial frames. Mach both wrong and right.

But is gravity just an inertial force? I.e. real or fake?
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3 Special Relativity

Maxwell equations:

∇ ·E =
ρ

ε0
, ∇×B − µ0ε0

∂E

∂t
= µ0J , ∇ ·B = 0, ∇×E +

∂B

∂t
= 0. (3.1)

Note: 4+4

In vacuum obtain wave equations

µ0ε0
∂2E

∂t2
−∇2E = 0, µ0ε0

∂2B

∂t2
−∇2B = 0, (3.2)

i.e.,

1

c2

∂2E

∂t2
−∇2E = 0,

1

c2

∂2B

∂t2
−∇2B = 0, c =

1

(µ0ε0)1/2
. (3.3)

Thus unify electromagnetism with light and determine the velocity of light.

7



Problems:
(1) In which frame do we measure c?
(2) Charge at rest produces an electrostatic field. Charge in uniform motion produces a magnetic field. But if keep

charge at rest and have an observer move past the charge with a uniform velocity, then what does observer see - electric or
magnetic? Sees both (cf. Lorentz force F = eE + ev×B). Thus E and B fields have no independent meaning.

(3) If keep on accelerating with F = ma could we eventually go faster than light?
(4) Maxwell equations are not Galilean invariant. They are Lorentz invariant. For x, y, z, t there are three rotations

around x, y and z axes, such as

x′ = cos θx+ sin θy, y′ = − sin θx+ cos θy, z′ = z (3.4)

that leave

x2 + y2 + z2 = x′2 + y′2 + z′2 (3.5)

invariant. But also three boosts that mix tx, ty and tz, such as

ct′ = sinh θx+ cosh θct, x′ = sinh θct+ cosh θx, z′ = z, sinh θ = v/c(1− v2/c2)1/2, cosh θ = 1/(1− v2/c2)1/2

(3.6)

and leave

c2t2 − x2 − y2 − z2 = c2t′2 − x′2 − y′2 − z′2 (3.7)

invariant. Similarly,

1

c2

∂2

∂t2
−∇2 =

1

c2

∂2

∂t′2
−∇′2, (3.8)

while E and B mix. Newton’s Laws are not Lorentz invariant.
(5) Wave carries energy and momentum. How is this transported. Maxwell answer: there is a mechanical ether.
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4 Michelson-Morley Experiment

Optics Interference Interferometry Michelson Interferometry

Physics Contributors Motta

Michelson-Morley Experiment
This entry contributed by Leonardo Motta

After the development of Maxwell's theory of electromagnetism, several experiments were performed to prove the
existence of ether and its motion relative to the Earth. The most famous and successful was the one now known as
the Michelson-Morley experiment, performed by Albert Michelson  (1852-1931) and Edward Morley
(1838-1923) in 1887.

Michelson and Morley built a Michelson interferometer, which essentially consists of a light source, a half-silvered
glass plate, two mirrors, and a telescope.  The mirrors are placed at right angles to each other and at equal
distance from the glass plate, which is obliquely oriented at an angle of 45° relative to the two mirrors. In the
original device, the mirrors were mounted on a rigid base that rotates freely on a basin filled with liquid mercury in
order to reduce friction.

Prevailing theories held that ether formed an absolute reference frame with respect to which the rest of the universe
 was stationary. It would therefore follow that it should appear to be moving from the perspective of an observer

on the sun-orbiting Earth. As a result, light would sometimes travel in the same direction of the ether, and others
times in the opposite direction. Thus, the idea was to measure the speed of light in different directions in order to
measure speed of the ether relative to Earth, thus establishing its existence.

Michelson and Morley were able to measure the speed of light by looking for interference fringes between the light
which had passed through the two perpendicular arms of their apparatus. These would occur since the light would
travel faster along an arm if oriented in the "same" direction as the ether was moving, and slower if oriented in the
opposite direction. Since the two arms were perpendicular, the only way that light would travel at the same speed in
both arms and therefore arrive simultaneous at the telescope would be if the instrument were motionless with
respect to the ether. If not, the crests and troughs of the light waves in the two arms would arrive and interfere
slightly out of synchronization, producing a diminution of intensity. (Of course, the same effect would be achieved if
the arms of the interferometer were not of the same length, but these could be adjusted accurately by looking for
the intensity peak as one arm was moved. Changing the orientation of the instrument should then show fringes.)

Although Michelson and Morley were expecting measuring different speeds of light in each direction, they found no
discernible fringes indicating a different speed in any orientation or at any position of the Earth in its annual orbit
around the Sun.

In 1895, Lorentz  concluded that the "null" result obtained by Michelson and Morley was caused by a effect of

Michelson-Morley Experiment -- from Eric Weisstein's World of Physics https://scienceworld.wolfram.com/physics/Michelson-MorleyExperi...

1 of 2 10/11/23, 5:29 PM

Michelson-Morley Experiment

If one beam moves parallel to ether and other arm perpendicular to ether should see a fringe shift at detector. None seen.
So no ether. However, the vacuum is not what it used to be. It has come a long way since Bernoulli. Quantum field theory
vacuum is an ether, just not a mechanical one. We can create particles out of the vacuum, and now we have dark energy.

However, if Michelson and Morley had performed the experiment in the vertical, then light in horizontal arm would sag
because of gravitational bending of light (key result of General Relativity), and they would have concluded that they had
found the ether.

Einstein: light does not obey v→ v+v0. Rather it obeys c→ c. But velocity is space over time. So both space and time
must vary – Lorentz contraction L′ = L(1 − v2/c2)1/2, and time dilation t′ = t/(1 − v2/c2)1/2. Now observers moving with
uniform velocity can all describe the same physics. Generalizes Newton’ First Law to velocities up to velocity of light.
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5 But what happens to Newton’s Second Law of Motion?

Einstein: there can only be one invariance law in physics, so make Newton’s Laws of Motion be Lorentz invariant, the
relativity principle. But relativity requires four-vectors not three-vectors and only have the three-vector dx/dt. So introduce
contravariant four-vectors

xµ = (ct, x, y, z), dxµ = (cdt, dx, dy, dz) (5.1)

and covariant four-vectors

xµ = (−ct, x, y, z), dxµ = (−cdt, dx, dy, dz). (5.2)

We can now form an invariant, the proper time

ds2 = −dxµdxµ = c2dt2 − dx2 − dy2 − dz2. (5.3)

with summation over repeated index µ. Thus we now introduce uµ = dxµ/ds, uµ = dxµ/ds with

dxµ

ds
=

(
1

(1− v2/c2)1/2
,

vx
c(1− v2/c2)1/2

,
vy

c(1− v2/c2)1/2
,

vz
c(1− v2/c2)1/2

)
, v =

dx

dt
(5.4)

and obtain

uµuµ =
dxµ

ds

dxµ
ds

= −1, (5.5)

i.e., four from three via a constraint.
To take care of the minus sign we introduce a rank two symmetric METRIC tensor ηµν = ηνµ, with ten independent

components

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.6)

and take µ to range over 0, 1, 2, 3, i.e., t, x, y, z. Then set xµ = ηµνx
ν, dxµ = ηµνdx

ν, s2 = −ηµνxµxν, ds2 = −ηµνdxµdxν.
This seems to be just an inconvenient nuisance. However, Einstein turns ηµν into gravity.

10



Introduce four-momentum

pµ = mcuµ = (E/c,p) =

(
mc

(1− v2/c2)1/2
,

mv

(1− v2/c2)1/2

)
. (5.7)

It obeys −pµpµ = m2c2 = E2/c2 − p2, i.e., E2 = p2c2 +m2c4, and thus E(p = 0) = mc2.
For force we only have a three-force f = dp/dt. So introduce a four-force

gµ =

(
f · v

c2(1− v2/c2)1/2
,

f

c(1− v2/c2)1/2

)
. (5.8)

Then with f = dp/dt we have

mc
d2xµ

ds2
=
dpµ

ds
= gµ. (5.9)

Thus now we have Newton’s Second Law of Motion in a form that observers moving with any uniform velocity up to that
of light can all agree on. And now no observer can go faster than the velocity of light.

Newton’s Third Law of Motion is direct: conservation of the total four-momentum:
∑
dpµ/ds = 0.
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To take care of the Maxwell fields we introduce an antisymmetric rank two tensor F µν = −F νµ, with six independent
components, just as needed for the three E fields and three B fields

F µν =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 (5.10)

To take care of the charge and current we introduce a four-vector Jµ = (ρ,J), with four independent components and
write the Maxwell equations with sources in the form

∂νF
µν = Jµ, εµνστ∂νFστ = 0, ∂µ =

∂

∂xµ
, (5.11)

where εµνστ is a fully antisymmetric rank four tensor. So all of its indices have to be different and ε0123 = −ε1023 = 1.
The Lorentz force equation with F = eE + ev×B generalizes to

dpµ

ds
= eF µν dxν

ds
. (5.12)
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6 But observers can accelerate

Consider a free particle obeying

d2ξα

ds2
= 0, ds2 = −ηαβdξαdξβ. (6.1)

Now change to some new coordinates xµ so that the ξα depend on the xµ. (I.e., x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.)
Thus we obtain

d

ds

(
∂ξα

∂xµ
dxµ

ds

)
=
∂ξα

∂xµ
d2xµ

ds2
+

∂2ξα

∂xµ∂xν
dxµ

ds

dxν

ds
= 0. (6.2)

Now multiply by ∂xλ/∂ξα, and using the product rule

∂xλ

∂ξα
∂ξα

∂xµ
= δλµ (6.3)

we obtain

d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds
= 0, (6.4)

where we have introduced the affine connection Γλµν defined by

Γλµν =
∂xλ

∂ξα
∂2ξα

∂xµ∂xν
. (6.5)

Similarly we can write the proper time as

ds2 = −ηαβdξαdξβ = −ηαβ
∂ξα

∂xµ
dxµ

∂ξβ

∂xν
dxν = −gµνdxµdxν, (6.6)

where

gµν(x) = ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
. (6.7)
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For polar coordinates for instance −c2dt2 + dx2 + dy2 + dz2 = −c2dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2, so

ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , gµν =


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 (6.8)

Thus the metric can depend on the coordinates, i.e., curvilinear coordinates.
We need to be able to remove all trace of the original ξα coordinates and write the connection entirely in terms of the xµ

coordinate system. To this end we evaluate

∂gµν
∂xλ

= ηαβ
∂2ξα

∂xµ∂xλ
∂ξβ

∂xν
+ ηαβ

∂ξα

∂xµ
∂2ξβ

∂xν∂xλ

= Γρλµ
∂ξα

∂xρ
∂ξβ

∂xν
ηαβ + Γρλν

∂ξα

∂xµ
∂ξβ

∂xρ
ηαβ

= Γρλµgρν + Γρλνgρµ. (6.9)

Thus we obtain

∂gµν
∂xλ

+
∂gλν
∂xµ

− ∂gµλ
∂xν

= Γρλµgρν + Γρλνgρµ + Γρµλgρν + Γρµνgρλ − Γρνµgρλ − Γρνλgρµ = 2Γρλµgρν. (6.10)

Now introduce an inverse metric that obeys

gνσgκν = δσκ . (6.11)

Thus we obtain

Γλµν =
1

2
gλσ (∂µgσν + ∂νgσµ − ∂σgµν) . (6.12)

With this form for the connection

d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds
= 0 (6.13)

is known as the geodesic equation. All accelerating observers agree on this. No need for Mach.
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7 Polar coordinate example

With ds2 = c2dt2 − dr2 − r2dθ2 − r2 sin2 θdφ2 and

gµν =


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 , gµν =


−1 0 0 0
0 1 0 0
0 0 1/r2 0
0 0 0 1/(r2 sin2 θ)

 (7.1)

we obtain

Γrθθ = −r, Γrφφ = −r sin2 θ, Γθrθ = Γθθr =
1

r
, Γφrφ = Γφφr =

1

r
,

Γφθφ = Γφφθ =
cos θ

sin θ
, Γθφφ = − sin θ cos θ. (7.2)

Equations of motion that follow from

d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds
= 0 (7.3)

are

r̈ − rθ̇2 − r sin2 θφ̇2 = 0, φ̈+
2

r
φ̇ṙ + 2

cos θ

sin θ
φ̇θ̇ = 0, θ̈ +

2

r
θ̇ṙ − sin θ cos θφ̇2 = 0, (7.4)

when v2/c2 � 1.
When θ = π/2 these equations integrate to

φ̈+
2

r
φ̇ṙ = 0, r2φ̇ = J, r̈ − rφ̇2 = r̈ − J2

r3
= 0,

ṙ2

2
+
J2

2r2
= E, (7.5)

to give conservation of angular momentum J and energy E.
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8 Transformations

Rotation: write

x′1 = x1 cos θ + x2 sin θ, x′2 = −x1 sin θ + x2 cos θ, x′3 = x3 (8.1)

in form x′i = Ri
jx

j, i.e.,x′1x′2
x′3

 =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

x1

x2

x3

 =

∂x′1/∂x1 ∂x′1/∂x2 ∂x′1/∂x3

∂x′2/∂x1 ∂x′2/∂x2 ∂x′2/∂x3

∂x′3/∂x1 ∂x′3/∂x2 ∂x′3/∂x3

x1

x2

x3

 (8.2)

We can also write Ri
j as

Ri
j =

∂x′i

∂xj
. (8.3)

Any quantity A(x) that transforms as A(x′) = A(x) is known as a scalar, or rank zero tensor (cf. (x1)2+(x2)2+

(x3)2 = (x′1)2+(x′2)2+(x′3)2). Any quantity Ai(x) that transforms as Ai′(x′) = Ri
jA

j(x) is known as a vector,

or rank one tensor (cf. dipole moment). Any quantity Aij(x) that transforms as A′ij(x′) = Ri
kR

j
`A

k`(x) is

known as a rank two tensor (cf. quadrupole moment or Maxwell stress tensor).
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Lorentz transformation: write

x′0 = x0 cosh θ + x1 sinh θ, x′1 = x0 sinh θ + x1 cosh θ, x′2 = x2, x′3 = x3 (8.4)

in form xµ′ = Λµ
νx

ν, i.e.,
x′0

x′1

x′2

x′3

 =


cosh θ sinh θ 0 0

sinh θ cosh θ 0 0

0 0 1 0

0 0 0 1



x0

x1

x2

x3

 =


∂x′0/∂x0 ∂x′0/∂x1 ∂x′0/∂x2 ∂x′0/∂x3

∂x′1/∂x0 ∂x′1/∂x1 ∂x′1/∂x2 ∂x′1/∂x3

∂x′2/∂x0 ∂x′2/∂x1 ∂x′2/∂x2 ∂x′2/∂x3

∂x′3/∂x0 ∂x′3/∂x1 ∂x′3/∂x2 ∂x′3/∂x3



x0

x1

x2

x3

 (8.5)

We can also write Λµ
ν as

Λµ
ν =

∂xµ′

∂xν
. (8.6)

Any quantity A(x) that transforms as A(x′) = A(x) is known as a scalar, or rank zero tensor (cf. ηµνx
µxν =

−(x0)2 + (x1)2 + (x2)2 + (x3)2 = (−(x′0)2 + (x′1)2 + (x′2)2 + (x′3)2 = gµνx
′µx′ν). Any quantity Aµ(x) that

transforms as A′µ(x′) = Λµ
νA

ν(x) is known as a vector, or rank one tensor (cf. electromagnetic current Jµ).

Any quantity Aµν(x) that transforms as A′µν(x′) = Λµ
κΛ

ν
ρA

κρ(x) is known as a rank two tensor (cf. F µν, gµν,

or energy-momentum tensor T µν).
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In the event that every element of Λµ
ν is independent of the xµ the transformations are LINEAR, and are

changes involving uniform velocity observers, just like Newton’s First Law of Motion. In this case the metric

is independent of the coordinates.

In the event that any element of Λµ
ν depends on the xµ the transformations are NONLINEAR (cf.

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ), and are changes involving nonuniform velocity observers, such

as accelerating observers. These transformations are known as GENERAL COORDINATE TRANS-

FORMATIONS. In this case the metric depends on the coordinates.

While quantities such as dxλ/ds and gµν transform as vectors and rank two tensors under general coordinate

transformations, neither d2xλ/ds2 or the connection

Γλµν =
1

2
gλσ (∂µgσν + ∂νgσµ − ∂σgµν) (8.7)

transform as vectors or rank three tensors under general coordinate transformations. However, as we now show

the geodesic with the specific relative weight

d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds
= 0 (8.8)

is a general coordinate vector.

Given an arbitrary gµν how can we determine whether or not it is a transformed ηµν. Answer given by

Riemann tensor

Rλ
µνκ = ∂κΓ

λ
µν − ∂νΓλµκ + ΓηµνΓ

λ
ηκ − ΓηµκΓ

λ
ην. (8.9)

and it is a rank four general coordinate tensor. Hence, if even as few as just one component of Rλ
µνκ does not

vanish in any given coordinate system, Rλ
µνκ does not vanish in any coordinate system. Riemann: a space is

flat if and only if all components of Rλ
µνκ = 0. Thus Rλ

µνκ 6= 0 means space is intrinsically curved. Einstein:

This is GRAVITY.
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9 Tensor analysis

Given that in a coordinate system xµ we have

Γλµν =
∂xλ

∂ξα
∂2ξα

∂xµ∂xν
, (9.1)

then in a coordinate system x′µ we have

Γ′λµν =
∂x′λ

∂ξα
∂2ξα

∂x′µ∂x′ν

=
∂x′λ

∂xρ
∂xρ

∂ξα
∂

∂x′µ

(
∂xσ

∂x′ν
∂ξα

∂xσ

)
=
∂x′λ

∂xρ
∂xρ

∂ξα

(
∂xσ

∂x′ν
∂xκ

∂x′µ
∂2ξα

∂xσ∂xκ
+

∂2xσ

∂x′µ∂x′ν
∂ξα

∂xσ

)
. (9.2)

Thus

Γ′λµν =
∂x′λ

∂xρ
∂xσ

∂x′ν
∂xκ

∂x′µ
Γρσκ +

∂x′λ

∂xρ
∂2xρ

∂x′µ∂x′ν
. (9.3)

The first term is what is required of a tensor, the second term is not. Thus Γ′λµν is not a rank three tensor.
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Noting that

∂x′λ

∂xρ
∂xρ

∂x′ν
= δλν , (9.4)

on differentiating with respect to x′µ we obtain

∂x′λ

∂xρ
∂2xρ

∂x′µ∂x′ν
+
∂xρ

∂x′ν
∂xσ

∂x′µ
∂2x′λ

∂xρ∂xσ
= 0, (9.5)

so that

Γ′λµν =
∂x′λ

∂xρ
∂xσ

∂x′ν
∂xκ

∂x′µ
Γρσκ +

∂x′λ

∂xρ
∂2xρ

∂x′µ∂x′ν
=
∂x′λ

∂xρ
∂xσ

∂x′ν
∂xκ

∂x′µ
Γρσκ −

∂xρ

∂x′ν
∂xσ

∂x′µ
∂2x′λ

∂xρ∂xσ
, (9.6)

and

Γ′λµν
dx′µ

ds

dx′ν

ds
=
∂x′λ

∂xρ
dxσ

ds

dxκ

ds
Γρσκ −

dxρ

ds

dxσ

ds

∂2x′λ

∂xρ∂xσ
. (9.7)

For the acceleration we note that

d2x′λ

ds2
=

d

ds

(
∂x′λ

∂xρ
dxρ

ds

)
=
∂x′λ

∂xρ
d2xρ

ds2
+

∂2x′λ

∂xρ∂xκ
dxρ

ds

dxκ

ds
. (9.8)

Thus finally we obtain

d2x′λ

ds2
+ Γ′λµν

dx′µ

ds

dx′ν

ds
=
∂x′λ

∂xρ

(
d2xρ

ds2
+ Γρσκ

dxσ

ds

dxκ

ds

)
. (9.9)

Thus the geodesic equation is a general coordinate vector equation.

Thus for Lorentz force

m

(
d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds

)
= eF λ

σ

dxσ

ds
. (9.10)
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10 Covariant derivative of a contravariant vector

Since Γλµν = (1/2)gλσ (∂µgσν + ∂νgσµ − ∂σgµν) is not a tensor but gµν is, ∂µ = ∂/∂xµ cannot act as a vector

(except as we see below when it acts on a scalar). So what do we do with ∂µV
ν where V µ is a contravariant

vector that obeys

V ′λ(x′) =
∂x′λ

∂xρ
V ρ(x). (10.1)

Differentiating gives

∂V ′λ

∂x′µ
=
∂x′λ

∂xρ
∂xκ

∂x′µ
∂V ρ

∂xκ
+

∂2x′λ

∂xρ∂xκ
∂xκ

∂x′µ
V ρ. (10.2)

Next, evaluating

Γ′λµνV
′ν =

(
∂x′λ

∂xρ
∂xσ

∂x′ν
∂xκ

∂x′µ
Γρσκ −

∂xρ

∂x′ν
∂xκ

∂x′µ
∂2x′λ

∂xρ∂xκ

)
∂x′ν

∂xτ
V τ

=
∂x′λ

∂xρ
∂xκ

∂x′µ
ΓρσκV

σ − ∂xκ

∂x′µ
∂2x′λ

∂xρ∂xκ
V ρ (10.3)

Thus we obtain

∂V ′λ

∂x′µ
+ Γ′λµνV

′ν =
∂x′λ

∂xρ
∂xκ

∂x′µ

(
∂V ρ

∂xκ
+ ΓρσκV

σ

)
. (10.4)

Hence

∇κV
ρ =

∂V ρ

∂xκ
+ ΓρκσV

σ (10.5)

is a rank two tensor.
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11 Covariant derivative of a covariant vector

A covariant vector transforms as

V ′ν(x′) =
∂xρ

∂x′ν
Vρ(x). (11.1)

Differentiating gives

∂V ′ν
∂x′µ

=
∂xρ

∂x′ν
∂xκ

∂x′µ
∂Vρ
∂xκ

+
∂2xρ

∂x′ν∂x′µ
Vρ. (11.2)

Next, evaluating

Γ′λµνV
′
λ =

(
∂x′λ

∂xρ
∂xσ

∂x′ν
∂xκ

∂x′µ
Γρσκ +

∂x′λ

∂xρ
∂2xρ

∂x′µ∂x′ν

)
∂xτ

∂x′λ
Vτ

=
∂xσ

∂x′ν
∂xκ

∂x′µ
ΓρσκVρ +

∂2xρ

∂x′µ∂x′ν
Vρ (11.3)

Thus we obtain

∂V ′ν
∂x′µ

− Γ′λµνV
′
λ =

∂xρ

∂x′ν
∂xκ

∂x′µ

(
∂Vρ
∂xκ
− ΓσκρVσ

)
. (11.4)

Hence

∇κVρ =
∂Vρ
∂xκ
− ΓσκρVσ (11.5)

is a rank two tensor.

Thus Maxwell equations covariantize to

∇νF
µν = Jµ, εµνστ∇νFστ = 0. (11.6)
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12 Generalizations and the special role of the metric

∇λT
µν = ∂λT

µν + ΓµλσT
σν + ΓνλσT

µσ,

∇λT
µ
ν = ∂λT

µ
ν + ΓµλσT

σ
ν − ΓσλνT

µ
σ,

∇λTµν = ∂λTµν − ΓσλµTσν − ΓσλνTµσ. (12.1)

While rule holds for every index of a general tensor such as for instance T µνστ αβγδ, there is a special case, viz.

no indices. Thus for a scalar S we have ∇µS = ∂µS.

For the metric we have

∇λgµν = ∂λgµν − Γσλµgσν − Γσλνgµσ. (12.2)

Now previously we had shown that

∂gµν
∂xλ

= ηαβ
∂2ξα

∂xµ∂xλ
∂ξβ

∂xν
+ ηαβ

∂ξα

∂xµ
∂2ξβ

∂xν∂xλ

= Γρλµ
∂ξα

∂xρ
∂ξβ

∂xν
ηαβ + Γρλν

∂ξα

∂xµ
∂ξβ

∂xρ
ηαβ

= Γρλµgρν + Γρλνgρµ. (12.3)

and shown that this relation is satisfied by

Γλµν =
1

2
gλσ (∂µgσν + ∂νgσµ − ∂σgµν) . (12.4)

Thus the Cartesian coordinate relation ∂ληµν = 0 generalizes to the general coordinate relation

∇λgµν = ∂λgµν − Γσλµgσν − Γσλνgµσ = 0. (12.5)
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Similarly, covariant derivatives are distributive. Thus since we have ∂λ[V µW ν] = ∂λ[V µ]W ν + V µ∂λ[W ν] in

the Cartesian case, in the general case we have

∇λ[V µW ν] = ∇λ[V µ]W ν + V µ∇λ[W µ]. (12.6)

Also we have

∇λ[Vµ] = ∇λ[gµνV
ν] = ∇λ[gµν]V

ν + gµν∇λ[V ν] = gµν∇λ[V ν]. (12.7)

Thus we can move the metric in and out of covariant derivatives.

Since

∇λgµν = 0 (12.8)

we have

gµσgντ∇λgµν = ∇λ[gµσgντgµν] = ∇λg
στ = 0. (12.9)

With V µWµ being a scalar we have

∇λ[V µWµ] = ∂λ[V µWµ] = ∂λ[V µ]Wµ + V µ∂λ[Wµ], (12.10)

but we also have

∇λ[V µWµ] = ∇λ[V µ]Wµ + V µ∇λ[Wµ] = [∂λV
µ + ΓµλνV

ν]Wµ + V µ[∂λWµ − ΓνλµWν]

= ∂λ[V µ]Wµ + V µ∂λ[Wµ] + ΓµλνV
νWµ − V µΓνλµWν

= ∂λ[V µ]Wµ + V µ∂λ[Wµ]. (12.11)

We thus see that if the covariant derivative of a contravariant vector contains plus times the connection term,

then the covariant derivative of a covariant vector must contain minus times the connection term.
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We also use the metric for raising and lowering.

V µ = gµνVν, Vµ = gµνV
ν. (12.12)

At any point we can remove the connection. We had shown that

Γ′λµν =
∂x′λ

∂xρ
∂xσ

∂x′ν
∂xκ

∂x′µ
Γρσκ −

∂xσ

∂x′ν
∂xκ

∂x′µ
∂2x′λ

∂xσ∂xκ

=
∂xσ

∂x′ν
∂xκ

∂x′µ

(
∂x′λ

∂xρ
Γρσκ −

∂2x′λ

∂xσ∂xκ

)
. (12.13)

To remove connection at the origin set x′λ = xλ + (1/2)xµxν[Γλµν]0 near the origin. This gives

∂x′λ

∂xρ
[Γρσκ]0 −

∂2x′λ

∂xσ∂xκ
→ [Γλσκ]0 − [Γλσκ]0 = 0. (12.14)
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13 The determinant

Set g = −Det[gµν]. For Minkowski with t, x, y, z as the coordinates we have

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , g1/2 = 1; ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , g1/2 = 1. (13.1)

For Minkowski polar with t, r, θ, φ as the coordinates we have

gµν =


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 , g1/2 = r2 sin θ; gµν =


−1 0 0 0
0 1 0 0
0 0 1/r2 0
0 0 0 1/(r2 sin2 θ)

 , g1/2 =
1

r2 sin θ
. (13.2)

In integrals the measures for the two cases are
∫
dtdxdydz and

∫
r2 sin θdtdrdθdφ. Thus in both cases we have

∫
g1/2d4x. So

g1/2 is the Jacobian. To see why this is we note that

g′µν(x
′) =

∂xσ

∂x′µ
∂xτ

∂x′ν
gστ(x). (13.3)

Taking determinants we obtain

g′ =

∣∣∣∣ ∂xσ∂x′µ

∣∣∣∣∣∣∣∣ ∂xτ∂x′ν

∣∣∣∣g, g′1/2 = J(x, x′)g1/2. (13.4)

Thus the invariant measure is
∫
g1/2d4x.
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Now we evaluate the contracted

Γµµν =
1

2
gµσ (∂µgσν + ∂νgσµ − ∂σgµν) =

1

2
gµσ∂νgµσ. (13.5)

Symbolically we need to evaluate Tr[M−1∂νM ]. We can work in the diagonal basis in which the eigenvalues of M are on
the diagonal. Thus we obtain

M =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 , M−1M ′ =


1/λ1 0 0 0

0 1/λ2 0 0
0 0 1/λ3 0
0 0 0 1/λ4



λ′1 0 0 0
0 λ′2 0 0
0 0 λ′3 0
0 0 0 λ′4

 , Trace[M−1M ′] =
∑
i

λ′i
λi

(13.6)

Similarly,

Det[M ] = Πiλi, ∂µ log[Det[M ]] =
∑
i

λ′i
λi

= Trace[M−1M ′]. (13.7)

Thus

Γµµν =
1

2
∂ν log g = g−1/2∂νg

1/2. (13.8)

Since

∇κV
ρ =

∂V ρ

∂xκ
+ ΓρκσV

σ (13.9)

we have

∇ρV
ρ =

∂V ρ

∂xρ
+ ΓρρσV

σ =
∂V ρ

∂xρ
+ V σg−1/2∂σg

1/2 = g−1/2∂σ

(
g1/2V σ

)
. (13.10)

For a scalar ∇σS is a vector, so that

∇µ∇µS = g−1/2∂σ

(
g1/2gστ∂τS

)
. (13.11)

Evaluating with g1/2 = r2 sin θ, grr = 1, gθθ = 1/r2, gφφ = 1/(r2 sin2 θ) for polar coordinates, we obtain

∇µ∇µS =
1

r2

∂

∂r

(
r2∂S

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂S

∂θ

)
+

1

r2 sin2 θ

∂2S

∂φ2
. (13.12)
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14 Gravity- a first look

Having shown that Newton’s Laws of Motion have to be modified to make them Lorentz invariant, the obvious thing to do
was to stay in flat space and write gravity as an analog of the Lorentz force as written in an accelerating coordinate system
in flat space with curvilinear coordinates:

m

(
d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds

)
= eF λ

σ

dxσ

ds
, Γλµν =

1

2
gλσ (∂µgσν + ∂νgσµ − ∂σgµν) . (14.1)

However that would not lead to mi = mg. Einstein: if we could pull gravity out of the Γλµν term we could get mi = mg. But
then have to replace Lorentz invariance by general coordinate invariance. So look at non-relativistic limit of geodesic

m

(
d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds

)
= 0, (14.2)

Taking only the 00 component of gµν to differ from ηµν we obtain

ds2 = −gµνdxµdxν = c2dt2[−g00 − dr2/c2dt2] = c2dt2[−g00 − v2/c2], (14.3)

and thus for v � c and g00 = −1 + h00 where h00 is small, then to lowest order in h00 we can set

ds2 = c2dt2[1− h00], Γr00 = −1

2
∂rh00 m

[
d2r

dt2
− c2

2
∂rh00

]
= 0. (14.4)

If we now set h00 = −(2/c2)φ we obtain

m

[
d2r

dt2
+ ∂rφ

]
= 0. (14.5)

So finally, if we set φ = −MGN/r, we obtain Newton’s Law of Gravity

m
d2r

dt2
= −mMGN

r2
, (14.6)

while establishing that mi = mg = m.
Concerns: is this metric real or fake. Even if not fake (i.e. cannot get back to ηµν), can we make it general coordinate

invariant, and if so, would we actually recover Newton’s Law of Gravity, and could we then get v2/c2 correction to Newton.
Thus need to ask what Newton’s Law of Gravity and the second-order Poisson equation that it satisfies would look like in
an accelerated coordinate system. Solution: curved space.
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15 Examples of curved spaces

Rλ
µνκ = ∂κΓ

λ
µν − ∂νΓλµκ + ΓηµνΓ

λ
ηκ − ΓηµκΓ

λ
ην. (15.1)

Gauss, Bolyai and Lobachevski

ds2 = dr2 + r2dθ2 − dz2, z2 = r2 + 1, zdz = rdr

ds2 = dr2 + r2dθ2 − r2dr2

1 + r2
=

dr2

1 + r2
+ r2dθ2 = −gµνdxµdxν. (15.2)

Rλµνκ = −(gµνgλκ − gµκgλν). (15.3)

The 2-dimensional space of (r, θ) has positive signature, but it is embedded in a flat 3-space with Minkowski signature. The
2-space is the space of Gauss, Bolyai and Lobachevski – a space of constant negative curvature, since it is a surface of a
hyperboloid in a 3-space, and is thus not flat, since neither a sphere nor a hyperboloid could be transformed into plane.
Curvature induced on the 2-space by the embedding. Euclid’s fifth axiom: if a line traverses two other lines and the two
interior angles that it makes with the two other lines add up to less than 180 degrees, then the two other lines must intersect.
It does not hold. So non-Euclidean geometry .

Robertson-Walker

Constrained 4-space

ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4. (15.4)

Impose

x2
1 + x2

2 + x2
3 + x2

4 = a2, x1dx1 + x2dx2 + x3dx3 + x4dx4 = 0. (15.5)

Eliminate x4

ds2 = dx2
1 + dx2

2 + dx2
3 +

[x1dx1 + x2dx2 + x3dx3]
2

a2 − x2
1 + x2

2 + x2
3

. (15.6)

Rewrite in polar coordinates

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2 +
r2dr2

a2 − r2
=

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2, k =

1

a2
. (15.7)
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Generalize to

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
(15.8)

k > 0 is 3-space of constant positive curvature, k = 0 is 3-space of zero curvature, i.e. 3-flat, k < 0 is

3-space of constant negative curvature. a(t) describes the overall temporal evolution of the 3-space. This is

the Robertson-Walker metric of modern cosmology associated with an expanding universe.

de Sitter

ds2 = c2dt2 − e2Hct
[
dr2 + r2dθ2 + r2 sin2 θdφ2

]
= −gµνdxµdxν. (15.9)

Rλµνκ = H2(gµνgλκ − gµκgλν). (15.10)

Associated with the inflationary universe, the accelerating universe, and dark energy.

Schwarzschild

ds2 = c2dt2
(

1− 2MG

c2r

)
− dr2

1− 2MG/c2r
− r2dθ2 − r2 sin2 θdφ2 (15.11)

Describes Newton’s Law of Gravity and gives rise to relativistic corrections, leading to precession of planetary

orbits and gravitational bending of light. All nonvanishing components of the Riemann tensor proportional to

−12MG/c2r3.
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16 Curvature

What is the status of the Riemann tensor

Rλ
µνκ = ∂κΓ

λ
µν − ∂νΓλµκ + ΓηµνΓ

λ
ηκ − ΓηµκΓ

λ
ην. (16.1)

Consider ∇νVµ. It is a covariant rank two tensor. Thus

∇κ∇νVµ = ∂κ∇νVµ − Γλκν∇λVµ − Γλκµ∇νVλ. (16.2)

Identifying covariant derivatives we can write

∇κ∇νVµ = ∂κ
[
∂νVµ − ΓλνµVλ

]
− Γλκν

[
∂λVµ − ΓσλµVσ

]
− Γλκµ [∂νVλ − ΓσνλVσ]

= ∂κ∂νVµ − ∂κΓλνµVλ − Γλνµ∂κVλ − Γλκν
[
∂λVµ − ΓσλµVσ

]
− Γλκµ [∂νVλ − ΓσνλVσ] . (16.3)

Similarly we can write

∇ν∇κVµ = ∂ν∂κVµ − ∂νΓλκµVλ − Γλκµ∂νVλ − Γλνκ
[
∂λVµ − ΓσλµVσ

]
− Γλνµ [∂κVλ − ΓσκλVσ] . (16.4)

Thus we obtain

∇κ∇νVµ −∇ν∇κVµ = −∂κΓλνµVλ + ∂νΓ
λ
κµVλ + ΓλκµΓσνλVσ − ΓλνµΓσκλVσ

= −∂κΓλνµVλ + ∂νΓ
λ
κµVλ + ΓηκµΓλνηVλ − ΓηνµΓλκηVλ. (16.5)

Thus finally we obtain

∇κ∇νVµ −∇ν∇κVµ = −Rλ
µνκVλ = −RλµνκV

λ. (16.6)

We thus establish that covariant derivatives do not commute and that the Riemann tensor is indeed a tensor,

i.e., under a general coordinate transformation it transforms as

R′λµνκ(x
′) =

∂xα

∂x′λ
∂xβ

∂x′µ
∂xγ

∂x′ν
∂xδ

∂x′κ
Rαβγδ(x). (16.7)

Thus despite the fact that the connection is not a tensor, the Riemann tensor is indeed a rank four tensor.

31



17 The significance of the Riemann tensor

Rλ
µνκ = ∂κΓ

λ
µν − ∂νΓλµκ + ΓηµνΓ

λ
ηκ − ΓηµκΓ

λ
ην, Γλµν =

1

2
gλσ (∂µgσν + ∂νgσµ − ∂σgµν) . (17.1)

If gµν = ηµν then space is flat and Rλ
µνκ = 0. If gµν is coordinate equivalent to ηµν, i.e., if

gµν =
∂xα

∂x′µ
∂xβ

∂x′ν
ηαβ, (17.2)

then Rλ
µνκ is still zero. If at least one component of Rλ

µνκ is not zero, then metric cannot be coordinate

equivalent to a flat metric. Space is then not flat, since Rλ
µνκ cannot vanish in any coordinate system. Thus

the curved space examples given above really are not flat.

Number of independent components of the Riemann tensor – not 64

Following some algebra rewriting the connection in terms of the metric yields

Rλµνκ =
1

2

[
∂2gλν
∂xκxµ

− ∂2gµν
∂xκxλ

− ∂2gλκ
∂xνxµ

+
∂2gµκ
∂xνxλ

]
+ gησ

[
ΓηνλΓσµκ − ΓηκλΓσµν

]
. (17.3)

Thus we establish

• symmetry: Rλµνκ = Rνκλµ

• antisymmetry: Rλµνκ = −Rµλνκ = −Rλµκν = +Rµλκν

• cyclicity: Rλµνκ + Rλκµν + Rλνκµ = 0

From the antisymmetry condition the Riemann tensor has to antisymmetric on the first two indices, and

antisymmetric on the last two indices. Thus 6x6=36=21+15. But from the symmetry condition it has to be

symmetric on the interchange of the first two indices with the last two, so 21. Then the cyclicity condition is a

completely antisymmetric condition just one condition, so finally 20 components. In N dimensions would get

N 2(N 2 − 1)/12.
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The 10-component Ricci tensor and the 1-component Ricci scalar

Rµκ = gλνRλµνκ = Rκµ, R = Rα
α = gµκRµκ. (17.4)

The Weyl tensor

Cλµνκ = Rλµνκ +
1

6
Rα

α [gλνgµκ − gλκgµν]−
1

2
[gλνRµκ − gλκRµν − gµνRλκ + gµκRλν] , (17.5)

obeys gλνCλµνκ = 0. It has the property that under a local rescaling of the metric (local conformal transfor-

mation) gµν(x)→ e2α(x)gµν(x)

Cλµνκ → e2α(x)Cλµνκ (17.6)

with all derivatives of α(x) dropping out (just like a gauge transformation). Under conformal transformation

ds2 → e2α(x)ds2, ds2 = 0→ ds2 = 0, (17.7)

so light cone is left invariant.

Geometry is conformal to flat (i.e., ds2 = e2α(x)[c2dt2 − dx2
1 − dx2

2 − dx2
3]), if and only if Cλµνκ = 0. On

introducing the conformal time

cdτ =

∫
cdt

a(t)
(17.8)

we can rewrite k = 0 Robertson-Walker metric as

ds2 = c2dt2 − a2(t)
[
dr2 + r2dθ2 + r2 sin2 θdφ2

]
= a2(t)

[
c2dτ 2 − dr2 − r2dθ2 − r2 sin2 θdφ2

]
. (17.9)

Thus for Robertson-Walker metric the Weyl tensor vanishes. The dynamics thus only depends on the Ricci

tensor and Ricci scalar, just as we will see for cosmology.
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18 The Bianchi Identities

As noted above at xµ = 0 we can make the connection vanish.Thus at that point we obtain

∇ηRλµνκ =
1

2

∂

∂η

[
∂2gλν
∂xκxµ

− ∂2gµν
∂xκxλ

− ∂2gλκ
∂xνxµ

+
∂2gµκ
∂xνxλ

]
. (18.1)

Evaluation then gives

∂ηRλµνκ + ∂κRλµην + ∂νRλµκη = 0. (18.2)

Thus in an arbitrary coordinate frame we have

∇ηRλµνκ +∇κRλµην +∇νRλµκη = 0. (18.3)

On multiplying by gλν we obtain

∇ηRµκ −∇κRµη +∇νRνµκη = 0. (18.4)

On multiplying by gµκ we obtain

∇ηR−∇µRµη −∇νRνη = 0. (18.5)

i.e.,

∇µ

(
Rµν − 1

2
gµνR

)
= 0. (18.6)
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19 The energy-momentum tensor

Consider a general action for a scalar field of the from I =
∫
d4xL(φ, ∂µφ), with associated Euler-Lagrange equation of

motion

∂µ
(

∂L

∂∂µφ

)
− ∂L

∂φ
= 0. (19.1)

Introduce the energy-momentum tensor

Tµν = −∂µφ
∂L

∂∂νφ
+ ηµνL (19.2)

Differentiating and using Euler-Lagrange equation gives

∂νTµν = − (∂ν∂µφ)
∂L

∂∂νφ
− ∂µφ∂ν

(
∂L

∂∂νφ

)
+ ∂µL

= − (∂ν∂µφ)
∂L

∂∂νφ
− ∂µφ

∂L

∂φ
+
∂L

∂φ
∂µφ+

∂L

∂∂νφ
∂µ∂

νφ = 0. (19.3)

Thus the the energy-momentum tensor is conserved.
For L = −(1/2)∂µφ∂

µφ− (1/2)m2c2φ2 (i.e., with ~ = 1), we obtain

∂µ∂
µφ−m2c2φ = 0,

Tµν = ∂µφ∂νφ− ηµν
(

1

2
∂κφ∂

κφ+
1

2
m2c2φ2

)
,

∂µTµν = ∂µ∂µφ∂νφ+ ∂µφ∂
µ∂νφ− ∂ν∂κφ∂κφ−m2c2∂νφφ = 0. (19.4)

To see the physical meaning of Tµν we note that

T00 = φ̇2 +
1

2

[
−φ̇2 +∇φ · ∇φ+m2φ2

]
=

1

2

[
φ̇2 +∇φ · ∇φ+m2c2φ2

]
= kinetic energy plus potential energy (19.5)
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20 Perfect fluid

Consider a complex scalar field with action, equation of motion, and energy-momentum tensor of the form

IS = −
∫
d4x

1

2

[
∂µφ

∗∂µφ+m2c2φ∗φ
]
,

∂µ∂
µφ−m2c2φ = 0, ∂µ∂

µφ∗ −m2c2φ∗ = 0,

Tµν =
1

2
[∂µφ

∗∂νφ+ ∂νφ
∗∂µφ]− 1

2
ηµν
[
∂αφ∂αφ

∗ +m2c2φ∗φ
]
. (20.1)

The wave equation has mode solutions of the form φ = e−iωkt+ik̄·x̄, φ∗ = eiωkt−ik̄·x̄ where ω2
k/c

2 = k̄2 + m2c2. The general
solution to the wave equation is thus of the form

φ(x) =
∑[

ak̄e
−iωkt+ik̄·x̄ + b∗k̄e

iωkt−ik̄·x̄
]
, φ∗(x) =

∑[
a∗k̄e

iωkt−ik̄·x̄ + bk̄e
−iωkt+ik̄·x̄

]
. (20.2)

If we insert this form into Tµν we get a double sum
∑

k̄

∑
k̄′. This is coherent.

However if we add the modes incoherently we only get a single sum
∑

k̄. I.e., we replace (A1 + A2)
2 = A2

1 + 2A1A2 + A2
2

by A2
1 + A2

2, with no cross term. For a single ak̄ mode with ak̄a
∗
k̄

= c/V ωk where V is three volume we obtain

Tµν =
ckµkν
V ωk

, (20.3)

where kµ = (ωk/c, kx, ky, kz), kµ = (−ωk/c, kx, ky, kz). Thus for kµ = (ωk/c, 0, 0, k) and kµ = (ωk/c, 0, 0,−k) we obtain

Tµν(kz) =


ωk/cV 0 0 k/V

0 0 0 0
0 0 0 0

k/V 0 0 ck2/V ωk

 , Tµν(−kz) =


ωk/cV 0 0 −k/V

0 0 0 0
0 0 0 0

−k/V 0 0 ck2/V ωk

 (20.4)

Adding them together incoherently gives

Tµν(z) = Tµν(kz) + Tµν(−kz) =


2ωk/cV 0 0 0

0 0 0 0
0 0 0 0
0 0 0 2ck2/V ωk

 (20.5)
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Repeating for modes in the kx, −kx, ky, −ky, directions we obtain

Tµν = Tµν(x) + Tµν(y) + Tµν(z) =


6ωk/cV 0 0 0

0 2ck2/V ωk 0 0

0 0 2ck2/V ωk 0

0 0 0 2ck2/V ωk

 (20.6)

Defining the energy density ρ = 6ωk/V , pressure p = 2c2k2/V ωk, and the fluid velocity uµ = (1, 0, 0, 0),

uµ = (−1, 0, 0, 0) as normalized to the timelike uµuµ = ηµνu
µuν = −1, we obtain the symmetric

Tµν =


ρ/c 0 0 0

0 p/c 0 0

0 0 p/c 0

0 0 0 p/c

 =
1

c
[(ρ + p)uµuν + pηµν] . (20.7)

We can now covariantize and obtain the symmetric general coordinate rank two tensor

Tµν = Tνµ =
1

c
[(ρ + p)uµuν + pgµν, ] , uµuµ = gµνu

µuν = −1, (20.8)

where uµ is a 4-vector and ρ and p are general coordinate scalars. Also Tµν is conserved, and thus obeys

∇µT
µν = 0. (20.9)

37



21 The Einstein equations

We had seen that we could introduce a weak gravitational potential φ by setting g00 = −1− 2φ/c2, with the

point particle action taking the form

I = mc

∫
ds = mc

∫
[−g00c

2dt2 + dx2]1/2 = mc2

∫
dt

[
1 +

φ

c2
+
v2

2c2

]
=

∫
Ldt (21.1)

at low velocity. This yields a Lagrangian and Euler-Lagrange equation of the form

L = mc2 + mφ +
mv2

2
, mẍ = m

dφ

dx
(21.2)

viz. the standard nonrelativistic Lagrangian and equation of motion for a particle moving in a gravitational

potential. Thus metric is the gravitational field.

We need an equation that fixes the potential. Thus need to generalize ∇2φ = 4πGρ and write it in an

accelerated coordinate system. We have an immediate problem: since ∇κgµν = 0 we cannot build out of

covariant derivative of the metric. However, Ricci tensor is a second derivative function of the metric and it is

a tensor. Moreover from Bianchi identity we find

Gµν = Rµν −
1

2
gµνR, ∇µG

µν = 0. (21.3)

Now T µν obeys ∇µT
µν = 0. Thus we are led to the Einstein equations

− c3

8πGN
Gµν = Tµν. (21.4)

Thus ten equations for ten unknown components of gµν, which can be solved once a Tµν is specified. However,

four general coordinate transformations. Compensated for by four components of the Bianchi identity.
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22 The second-order Poisson equation

Try a weak gravity static, spherically symmetric line element of the form

ds2 = c2dt2(1 + h(ρ)]− (1 + j(ρ)][dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2] (22.1)

where h(ρ) and j(ρ) are small. For this metric the nonzero components of the Einstein tensor evaluate to

lowest order in h(ρ) and j(ρ) to

G00 = j′′ +
2

ρ
j′, Grr = −1

ρ
[j′ + h′], Gθθ =

Gφφ

sin2 θ
= −ρ

2

2
[j′′ + h′′]− 2ρ[j′ + h′], (22.2)

where the prime denotes d/dρ. In the nonrelativistic limit with a mattter energy-momentum tensor (ρM/c +

pM/c)uµuν + (pM/c)ηµν with pM � ρM , the Einstein equations reduce to

G00 = j′′ +
2

ρ
j′ = −8πGN

c4
ρM ,

Grr = −1

ρ
[j′ + h′] = 0,

Gθθ = −ρ
2

2
[j′′ + h′′]− 2ρ[j′ + h′] = 0. (22.3)

Solution is

j + h = 0, h′′ +
2

ρ
h′ = ∇2h =

8πGN

c4
ρM . (22.4)
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Thus with h = 2φ/c2 we finish up with

∇2φ =
1

ρ2

d

dρ

[
ρ2dφ

dρ

]
=

4πGN

c2
ρM , (22.5)

which we recognize as the second-order Poisson equation. For a source of radius ρ0 and ρM = Mc2/[4πρ3
0/3],

then with φ(0) = 0, in ρ > ρ0 we obtain∫ ρ

0

ρ2dρ∇2φ = ρ2dφ

dρ

∣∣∣∣ρ
0

= MGN , φ(ρ > ρ0) = −MGN

ρ
. (22.6)

Finally, we can write the line element as

ds2 = c2dt2(1 + 2φ/c2]− (1− 2φ/c2)][dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2], (22.7)

and get a huge bonus: we do not just get Newton, we get the v2/c2 correction, just as needed for the orbit of

Mercury.

There is actually an exact exterior (ρ > ρ0) solution

ds2 = c2dt2
(

1−MGN/2c2ρ

1 + MGN/2c2ρ

)2

−
(

1 +
MGN

2c2ρ

)4

[dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2]. (22.8)

With ρ = 1
2

[
r −MGN/c

2 + (r2 − 2MGNr/c
2)1/2

]
, r = ρ(1 +MGN/2c2ρ)2 it is coordinate equivalent to the

exact solution found by Schwarzschild:

ds2 = c2dt2
(

1− 2MGN

c2r

)
− dr2

(
1− 2MGN

c2r

)−1

− r2dθ2 − r2 sin2 θdφ2, (22.9)

a solution which is singular at r = 2MGN/c
2, the Schwarzschild radius of a black hole.
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23 The Schwarzschild solution

For a static, spherically symmetric source such as a star we take as line element

ds2 = B(r)c2dt2 − A(r)dr2 − r2dθ2 − r2 sin2 θdφ2, (23.1)

so that the metric and its inverse are given by

gµν =


−B(r) 0 0 0

0 A(r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 , gµν =


−1/B(r) 0 0 0

0 1/A(r) 0 0
0 0 1/r2 0
0 0 0 1/(r2 sin2 θ)

 . (23.2)

The nonvanishing components of the connection Γλµν = 1
2g

λσ (∂µgσν + ∂νgσµ − ∂σgµν) are given by

Γrθθ = − r

A(r)
, Γrφφ = −r sin2 θ

A(r)
, Γθrθ = Γθθr =

1

r
, Γφrφ = Γφφr =

1

r
,

Γφθφ = Γφφθ =
cos θ

sin θ
, Γθφφ = − sin θ cos θ,

Γrrr =
A′(r)

2A(r)
, Γrtt =

B′(r)

2A(r)
, Γtrt = Γttr =

B′(r)

2B(r)
, (23.3)

where the prime denotes the derivative with respect to r. The nonzero components of Gµν = Rµν − 1
2gµνg

αβRαβ, where
Rµκ = ∂κΓ

λ
µλ − ∂λΓλµκ + ΓηµλΓ

λ
κη − ΓηµκΓ

λ
λη, are given by

Gtt = −B
r2

+
B

r2A
− BA′

rA2
,

Grr =
A

r2
− 1

r2
− B′

rB
,

Gθθ =
Gφφ

sin2 θ
= −r

2B′′

2AB
+
r2A′B′

4A2B
+
r2B′2

4AB2
− rB′

2AB
+
rA′

2A2
. (23.4)
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For the energy-momentum tensor Tµν = 1
c [(ρ+ p)uµuν + pgµν, ], with velocity uµuµ = gµνu

µuν = −1, the only nonzero
components of the velocity are u0 = B−1/2, u0 = −B1/2. Thus we have

Tµν =


B(r)ρ(r)/c 0 0 0

0 A(r)p(r)/c 0 0
0 0 r2p(r)/c 0
0 0 0 r2 sin2 θp(r)/c

 . (23.5)

The Einstein equations −(c3/8πGN)Gµν = Tµν thus give us

− B

r2
+

B

r2A
− BA′

rA2
= −8πGN

c4
Bρ.

A

r2
− 1

r2
− B′

rB
= −8πGN

c4
Ap,

− r2B′′

2AB
+
r2A′B′

4A2B
+
r2B′2

4AB2
− rB′

2AB
+
rA′

2A2
= −8πGN

c4
r2p. (23.6)

The third equation is not independent of the first two since ∇νG
µν = 0. Multiplying the first equation by A/B and adding

it to the second equation gives

1

r

(
B′

B
+
A′

A

)
=

8πGN

c4
A(ρ+ p). (23.7)

Inserting this equation back into the second Einstein equation then gives

A′

rA
+
A

r2
− 1

r2
=

8πGN

c4
Aρ,

rA′

A2
+ 1− 1

A
=

8πGN

c4
r2ρ =

d

dr

(
r − r

A

)
. (23.8)

Integrating
∫
dr, identifying 4π

∫ r
0 drr

2ρ = M(r)c2 and setting A(0) = 1 we obtain

1

A
= 1− 2M(r)GN

c2r
,

B′

B
= −A

′

A
+

8πGN

c4
Ar(ρ+ p) =

A

r
− 1

r
+

8πGN

c4
Ap. (23.9)

Thus for a source of radius r0 and mass 4π
∫ r0

0 drr2ρ = Mc2, so that ρ(r > r0) = 0, p(r > r0 = 0), we obtain

A(r < r0) =

(
1− 2M(r)GN

c2r

)−1

, A(r > r0) =

(
1− 2MGN

c2r

)−1

, B(r > r0) =
1

A(r > r0)
= 1− 2MGN

c2r
. (23.10)

This is the Schwarzschild vacuum solution exterior to a localized source. To solve for B(r < r0) we need to know p(r),
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23.1 There has to be a source

If we insert A′/A = −B′/B, i.e., A = 1/B, into Gθθ, then in the vacuum we obtain

Gθθ = − r2

2AB

[
B′′ +

2

r
B′
]

= −r
2

2
∇2B = −r

2

2
∇2

(
1− 2MGN

c2r

)
= −MGNr

2

4πc2
δ3(r̄). (23.11)

so not a vacuum solution at r = 0. Thus only an exterior solution at r > r0, and needs some mass in interior region to
support it.

23.2 Some numbers

For the sun

RS
� =

2M�GN

c2
= 2.96× 105 cm. (23.12)

Radius of the sun R� = 6.96× 1010 cm. So the solar Schwarzschild radius is deep within the sun.

23.3 Black holes

But if the Schwarzschild radius RS is greater or equal to the radius R0 of a system we have a black hole, so classically light
cannot escape. Except it can quantum-mechanically, viz. Hawking radiation. rS acts as horizon

The density of a black hole whose Schwarzschild radius is equal to its radius is given by

ρ =
M

(4π/3)R2
0

=
M

(4π/3)R2
S

=
3M

4π

(
c2

2MGN

)3

. (23.13)

For one solar mass get ρ = 1016 gm.cm−3. The density of the proton is of order Mp/R
3
p = 10−24/10−39 = 1015 gm.cm−3.

Thus a solar mass black hole has nuclear density right throughout the star. If we increase the black hole mass to 107M�
density becomes 10 gm.cm−3, not far from the density of water - quite counterintuitive.

Evidence for black holes: centers of active galactic nuclei, centers of spirals, gravitational waves seen at LIGO, event horizon
telescope.

43



44



162571main_GPB_circling_earth3_516.jpg (JPEG Image, 516 × 3... https://www.ligo.caltech.edu/system/media_files/binaries/266/smal...

1 of 1 10/28/17, 5:35 PM

Light Bending

12

Light Bending

45



Light Bending

46



Tardis through the wormhole
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Figure 1: In December 1999 Time magazine designates Albert Einstein the man of the twentieth century48



24 Geodesics

For the general static, spherically symmetric metric of the form dτ 2 = B(r)c2dt2 − A(r)dr2 − r2dθ2 − r2 sin2 θdφ2 the four
equations of motion contained in d2xλ/dτ 2 + Γλµν(dx

µ/dτ)(dxν/dτ) = 0 take the form

c
d2t

dτ 2
+
cB′

B

dt

dτ

dr

dτ
= 0,

d2r

dτ 2
+
A′

2A

(
dr

dτ

)2

− r

A

(
dθ

dτ

)2

− rsin2θ

A

(
dφ

dτ

)2

+
c2B′

2A

(
dt

dτ

)2

= 0,

d2θ

dτ 2
+

2

r

dθ

dτ

dr

dτ
− sinθcosθ

(
dφ

dτ

)2

= 0,

d2φ

dτ 2
+

2

r

dφ

dτ

dr

dτ
+ 2

cosθ

sinθ

dφ

dτ

dθ

dτ
= 0, (24.1)

with the prime denoting differentiation with respect to r. Equatorial plane solutions can be found in which θ is fixed to
θ = π/2, with the equations of motion for the three other coordinates reducing to

c
d2t

dτ 2
+
cB′

B

dt

dτ

dr

dτ
= 0,

d2r

dτ 2
+
A′

2A

(
dr

dτ

)2

− r

A

(
dφ

dτ

)2

+
c2B′

2A

(
dt

dτ

)2

= 0,

d2φ

dτ 2
+

2

r

dφ

dτ

dr

dτ
, = 0. (24.2)

The first and last of these equations take the form

d

dτ

[
log

(
dφ

dτ

)
+ log r2

]
= 0,

d

dτ

[
log

(
cdt

dτ

)
+ logB

]
= 0 (24.3)

On choosing convenient integration constants they have first integrals of the form

r2dφ

dτ
= J, c

dt

dτ
=

1

B(r)
. (24.4)
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Inserting these relations into the radial derivative equation gives

d2r

dτ 2
+
A′

2A

(
dr

dτ

)2

− J2

Ar3
+

B′

2AB2
= 0, (24.5)

with integral

A(r)

(
dr

dτ

)2

+
J2

r2
− 1

B(r)
= −E, (24.6)

where E is an integration constant, equal to the energy per unit mc2. Thus mc2-Energy= kinetic energy, so 1 − E > 0.
Evaluating the line element gives ds2 = Edτ 2. Thus 1 > E > 0 for massive particles and E = 0 for massless ones. Using
cdt/dτ = 1/B(r) we can eliminate τ and obtain

r2

c

dφ

dt
= JB(r),

A(r)

c2B2(r)

(
dr

dt

)2

+
J2

r2
− 1

B(r)
= −E, ds2 = EB2(r)c2dt2. (24.7)

As a check we note that for a circular orbit the second equation in (24.2) gives

v2

r2
=

(
dφ

dt

)2

=
c2

2r
B′(r) =

2MGN

2r3
,

v2

r
=
MGN

r2
. (24.8)

From (24.4) and (24.6) we obtain for the orbit

A(r)

r4

(
dr

dφ

)2

+
1

r2
− 1

J2B(r)
= −E

J2
. (24.9)

so that

φ = ±
∫
dr

JB1/2(r)A1/2(r)

r[r2 − Er2B(r)− J2B(r)]1/2
. (24.10)

For bound orbits there are turning points where dr/dφ = 0, i.e., where

r2(1− EB)− J2B = 0 (24.11)
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With B = 1− 2β/r and 1− E > 0, β > 0 we have

r2(r − Er + 2Eβ)− J2(r − 2β) = 0, r3 +
2βEr2

1− E
− J2r

1− E
+

2βJ2

1− E
= 0,

(r − a1)(r − a2)(r − a3) = r3 − r2(a1 + a2 + a3) + r(aia2 + a2a3 + a3a1)− a1a2a3 = 0. (24.12)

Thus a1 + a2 + a3 < 0, aia2 + a2a3 + a3a1 < 0, a1a2a3 < 0. From a1a2a3 < 0 either one negative root or three. From
aia2 + a2a3 + a3a1 < 0 three negative excluded. Thus one negative and two positive roots. But the radial coordinate is
positive. Thus only two relevant positive roots.

Thus two turning points, r+ and r−, apogee and perigee. Hence the orbit is an ellipse. Introduce semilatus rectum
2/L = 1/r+ + 1/r−. Can solve exactly, find orbit precesses at rate of 6πM�GN/c

2L radians per revolution. For Mercury,
L = 5.53× 1012 cm, Get ∆φ = 0.104 seconds per revolution. Then 43.03 seconds per century, just as required.

To understand what is happening consider the weak gravity Schwarzschild line element and point particle action

ds2 = c2dt2
(

1− 2β

r

)
− dr2

(
1 +

2β

r

)
= c2dt2

[
1− 2β

r
− v2

c2
− 2v2β

c2r

]
,

I =mc

∫
ds = mc2

∫
dt

[
1− β

r
− v2

2c2
− v2β

c2r

]
. (24.13)

Now Newtonian v2/c2 is equal to β/r. Thus correction term is is of order v2β/c2r = v4/c4 or equivalently of order β2/r2.
Hence precession of planetary orbits. (If just β/r then no precession.)

Moreover, if v = c get

ds2 = c2dt2
[
1− β

r
− 1− β

r

]
. (24.14)

i.e., equal amounts of time dilation and Lorentz contraction causing gravitational bending of light. Full calculation of φ(r)
for unbound orbit. Find for light just grazing the sun get ∆φ = M�GN/R�=1.75 seconds, just as observed.

Third classic test: gravitational redshift. Also confirmed.
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25 Cosmology

25.1 Hubble flow

Hubble identified a systematic behavior in galaxies: they were all redshifted with respect to us, i.e., moving away from us,
and had velocities of the form v = HD, where D is the distance from us and H is a constant.

Rationale: No point is special. Consider three equally spaced points A, B, C on a straight line. Let B have a velocity v
with respect to A. Let C have a velocity v with respect to B. Then C has a velocity 2v with respect to A, and is twice as
far from A as B is. Thus v = HD. Supernovae data as log plot:
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If no point is special then universe is homogeneous and isotropic. So line element is as in (15.8):

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
(25.1)

As space expands the axes on a grid expand with it, so coordinates of points do not change, viz. comoving.

However actual distance between points does change since grid itself expands with expansion radius a(t). Here

k is the spatial 3-curvature, k > 0 closed surface, k = 0 flat, k < 0 open surface.

Redshift: Put ourselves at origin of coordinates. Consider a light signal that leaves a point distance r1 from us

at time t1 and reaches us at time t0. It travels on null geodesic

c

∫ t0

t1

dt

a(t)
=

∫ r1

0

dr

(1− kr2)1/2
(25.2)

Consider a second signal that leaves r1 at a slightly later time t1 + δt1 and reaches us at t0 + δt0. It travels on

c

∫ t0+δt0

t1+δt1

dt

a(t)
=

∫ r1

0

dr

(1− kr2)1/2
. (25.3)

Thus

δt0
a(t0)

=
δt1
a(t1)

,
δt1
δt0

=
ν0

ν1
=
a(t1)

a(t0)
. (25.4)

Define redshift

z =
λ0 − λ1

λ1
=
ν1

ν0
− 1 =

a(t0)

a(t1)
− 1. (25.5)
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25.2 Newtonian cosmology

Consider a static, spherically symmetric universe of density ρ, total mass M = (4π/3)ρr3, with a particle of mass m, velocity
v at a distance r. Its energy is

U =
1

2
mv2 − mMGN

r
=

1

2
mv2 − 4πmGNρr

3

3r
(25.6)

Now set v = Hr. This gives

U =
m

2
H2r2 − 4πmGNρr

2

3
=
m

2
r2

(
H2 − 8π

3
GNρ

)
=

4πmGNr
2

3
(ρc − ρ) . (25.7)

This allows us to define a critical density ρc = 3H2/8πGN of order 10−29 gm.cm−3. Thus if ρ > ρc U iis negative and particle
is bound. If. ρ < ρc particle escapes, i.e., unbound.

If ρ = ρc then

v =
dr

dt
=

(
2MGN

r

)1/2

, (2MGN)1/2t =
2

3
r3/2, 2MGN = rv2 = H2r3 =

9

4
2H2MGN t

2. (25.8)

Thus we get

t =
2

3H
(25.9)

With H0 = 72 km sec−1 Mpc−1 = 2.4× 10−18 sec, 1/H0 = 4×1017sec, current age of universe =2.67×1017 sec. Approximately
10 billion years.
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26 General relativistic cosmology

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
= c2dt2 − a2(t)g̃ijdx

idxj. (26.1)

Nonzero components of the affine connections, the Ricci tensor and Einstein tensor are (c=1)

Γ0
ij = aȧg̃ij, Γi0j =

ȧ

a
δIj , Γijk =

1

2
(g̃−1)i` [∂j g̃k` + ∂kg̃j` − ∂`g̃jk) ,

R00 =
3ä

a
, Rij = −(aä+ 2ȧ2 + 2k)g̃ij. R = −6(aä+ ȧ2 + k)

a2
,

G00 = −3(ȧ2 + k)

a2
, Gij = g̃ij

[
2aä+ ȧ2 + k

]
. (26.2)

Because of the homogeneous and isotropic geometry the energy-momentum tenser must be a perfect fluid with ρ and p only
being functions of t, and with uµ = (1, 0, 0, 0), uµ = (−1, 0, 0, 0). Thus with Tµν = (ρ+ p)uµuν + pgµν the Einstein equations
take the form

−3(ȧ2 + k)

a2
= −8πGNρ, 2aä+ ȧ2 + k = −8πGNa

2p. (26.3)

so that, with H = ȧ/a (cf. v/r = H), we obtain

ȧ2 + k =
8πGN

3
a2ρ, H2 +

k

a2
=

8πGN

3
ρ, ä = −4πGN

3
a(ρ+ 3p). (26.4)

The first of these equations is known as the Friedmann equation, the second is analogous to Newtonian cosmology with
same ρc = 3H2/8πGN , and the third says that even with ȧ > 0, nonetheless ä is negative (deceleration) if ρ + 3p > 0, i.e.,
slowing down expansion.

Covariant conservation of T µν gives

∂µT
µ0 + ΓµµσT

σ0 + Γ0
µσT

µσ = 0, ∂0T
00 + Γii0T

00 + Γ0
ijT

ij = 0, ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (26.5)

Three key solutions, relativistic, nonrelativistic and cosmological constant:

(1) : p =
ρ

3
, ρ =

A

a4
, (2) : p = 0, ρ =

B

a3
, (3) : p = −ρ, ρ = Λ = constant. (26.6)

Known as radiation era, matter era, cosmological constant era (viz. inflation).
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26.1 Cosmological implications

Some typical solutions with k = 0.

ρ =
B

a3
, ȧ2 =

8πGNB

3a
, a(t) = (6πGNB)1/2t2/3,

ρ =
A

a4
, ȧ2 =

8πGNA

3a2
, a(t) =

(
32πGNA

3

)1/2

t1/2,

ρ = Λ, ȧ2 =
8πGNΛa2

3
, a(t) = eHt, H =

(
8πGNΛ

3

)1/2

. (26.7)

Some typical radiation era solutions for any k

ρ =
A

a4
, ȧ2 + k =

8πGNA

3a2
, a2(t) =

(
32πGNA

3

)1/2

t− kt2 (26.8)

If k = 0 or k < 0 then a(t) expands forever. If k > 0 then a(t) reaches a maximum at t = (8πGNA/3)1/2/k,

after which a(t) contracts. H = ȧ/a blows up at t = 0, the big bang.. For black body ρ = A/a4 = aBT
4.

Thus a(t) = µ/T where µ = (A/aB)1/4, so early universe is hot, and universe cools as it expands. Thus

approximately radiation until last scattering of photons and baryons (at around 3000◦ when temperature

becomes too low to ionize atoms) and matter era since then until today (around 3◦). After last scattering

radiation propagates as a free black body. If switch from radiation era to matter era iabruptly at tL then

9Bt
1/3
L = 16A.

Successes: Hubble flow, cosmic microwave background (CMB), primordial nucleosynthesis,

baryon acoustic fluctuations in the CMB.
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Fig. 2.—Preliminary spectrum of the cosmic microwave background from 
the FIRAS instrument at the north Galactic pole, compared to a blackbody. 
Boxes are measured points and show size of assumed 1% error band. The units 
for the vertical axis are 10“4 ergs s -1 cm-2 sr~1 cm. 

The error band in Figure 2 is a conservative estimate of the 
systematic errors in our current calibration algorithm, taken to 
be 1% of the peak intensity of the spectrum. Since the data 
show a good null both when the FIRAS is looking at the external 
calibrator and at the sky, one can determine from the interfero- 
grams alone that the spectrum of the sky is close to a blackbody, 
regardless of the details of the data reduction and calibration. 

IV. DISCUSSION 
The CMBR temperature reported here lies between the 

average of direct ground-based measurements, 2.655 ± 0.036 
K (see Smoot et al 1988 for a tabulation), and the precise 
measurement of 2.783 ± 0.025 K (1 o) at 0.8 cm"1 made from a 
balloon by Johnson and Wilkinson (1987). At the CN tran- 
sition frequency, the temperature measured by FIRAS is 
2.735 ± 0.06 K, compared to 2.70 ± 0.04 K from Meyer and 
Jura (1985), 2.796( +0.014, -0.039) K from Crane et al. (1989), 
and 2.77 ± 0.4 K from Kaiser and Wright (1990). The FIRAS 
data are not consistent with the departures from a blackbody 
spectrum reported by Matsumoto et al. (1988). 

Using the conservative 1% error bands, these new data set a 
3 a upper limit on the Comptonization y parameter of 0.001 
and on the chemical potential g of 0.009. This value of g is 
based on a fit to a pure Bose-Einstein spectrum with g inde- 
pendent of frequency. The hot smooth intergalactic medium 
(IGM) suggested to explain the cosmic X-ray background by 

Fig. 3.—Composite plot of recent measurements of the temperature of the 
sky (temperature of the cosmic background vs. wavelength). A = Sironi et al. 
(1987), B = Levin et al. (1987), C = Sironi and Bonelli (1986), D = De Amici et 
al. (1988), E = Mandolesi et al. (1986), F = Kogut et al. (1988), G = Johnson 
and Wilkinson (1987), H = Smoot et al. (1985), I = Smoot et al. (1987), 
J = Crâne et al. (1989), K = Meyer et al. (1989), Palazzi et al. (1990), 
L = Matsumoto et al. (1988). 

Field and Perrenod (1977), Guilbert and Fabian (1986), and 
recalculated by Taylor and Wright (1989) can be ruled out, 
since the predicted X-ray background scales as y2. The new 
limits on y would limit the X-ray background to only 1/36 of 
the observed value, even at a heating redshift as small as zc = 2. 
Many other sources of distortions of the CMBR spectrum 
(Bond, Carr, and Hogan 1986) are also severely constrained. 

A more accurate determination of the spectrum will be made 
after further sky observations, calibrations, and refinement of 
the calibration algorithm. The ultimate accuracy of any mea- 
sured spectrum distortions should be limited only by the 
optical design and stability of the external calibrator and by 
the models of radiation from interstellar dust. 

It is a pleasure to acknowledge the vital contributions of all 
those at GSFC who devoted their efforts to making this chal- 
lenging mission not only possible but enjoyable as well. Special 
thanks are due to Paul Richards and Patrick Thaddeus for 
their early encouragement to the lead author, to Robert 
Maichle and Michael Roberto for leading the engineering 
effort on the FIRAS instrument, and to Shirley Read, Robert 
Kümmerer, and Leonard Olson for their leadership in software 
development for the FIRAS. 
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26.2 Horizon problem

In the k = 0 case for the line element ds2 = c2dt2 − a2(t)[dr2 + r2dθ2 + r2 sin2 θdφ2] the
proper radial distance (the horizon) is dH = a(t)

∫
dr. The last scattering sky is at time tL

since the big bang and at a distance rL from us. A radial null geodesic that reaches us at
time t0 and r = 0 from the last scattering sky is of the form∫ rL

0

dr =

∫ t0

tL

dt

a(t)
, rL =

3

(6πGNB)1/2
[t

1/3
0 − t

1/3
L ] ≈ 3

(6πGNB)1/2
t
1/3
0 . (26.9)

A yardstick on the sky at time tL that fills the sky subtends an angle π, and at our current
time has an approximate proper angular diameter dA = a(tL)πrL.
A null signal that sets out at t = 0 at a distance r0 from us travels to last scattering according
to ∫ r0

rL

dr =

∫ tL

0

dt

a(t)
, r0 − rL =

(
3

8πGNA

)1/2

t
1/2
L , (26.10)

and has an associated proper distance dH = a(tL)t
1/2
L (3/8πGNA)1/2. Thus we get

dH
dA

=

(
3

8πGNA

)1/2

t
1/2
L

(6πGNB)1/2

3π
t
−1/3
0 =

2

3π

(
tL
t0

)1/3

=
2

3π

(
T0

TL

)1/2

= a few degrees

(26.11)

So last scattering sky should not have thermalized, and yet it has to one part in 105.
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26.3 Flatness problem

Measure baryon density ρB today to be about 0.01ρc. If k = 0 should be equal to ρc. With evolution equation

ȧ2 + k = (8πG/3)a2ρ, at big bang singularity the infinity in ȧ2 balances singularity in (8πG/3)a2ρ no matter

what k is. So structure of initial universe is same as that of a k = 0 universe. The matter density now redshifts

for 10 billion years and yet is still close to a universe with k = 0 today. Chance of getting such a universe

today evaluates to one part in 1060. Thus have to fine tune initial conditions to have universe evolve into what

we see today. Now if k = 0 would not need to fine tune initial conditions since then ρ = ρc in every epoch.

But current ρ = 0.01ρc. This is the flatness problem.

26.4 Cosmological constant problem

As universe cools it goes through electroweak phase transition at around 1015 ◦K. This releases a free energy

of order T 4 = 1060. But current temperature is of order a few degrees. So energy in vacuum energy (viz.

cosmological constant) is of 1060 times that of energy in ordinary matter. A total disaster unless quenched.

26.5 Accelerating universe problem

High redshift supernova data show gravity has a repulsive component.

26.6 Quantum gravity problem

Quantum graviton loops are infinite. A total disaster unless quenched.
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26.7 General nature of the problems

If a(t) = tn then ȧ = ntn−1, ä = n(n− 1)tn−2,
∫
dt/a(t) = t1−n/(1− n),

∫
dt/a(t) = log t

if n = 1.

If n < 1 then ȧ blows up at t = 0, ä < 0,
∫
dt/a(t) is finite at t = 0. Initial singularity and

flatness problem, deceleration, and horizon problem

If n ≥ 1 then ȧ does not blow up at t = 0, ä > 0,
∫
dt/a(t) blows up at t = 0, No initial

singularity, no flatness problem, acceleration, no horizon problem.
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26.8 Inflation and the dark matter problem

Can solve horizon problem if n ≥ 1. Brout, Englert and Gunzig (1978), Kazanas (1979),
Starobinsky (1979), Guth (1980) showed that if a(t) = eHt then no horizon problem.

Guth: a(t) = eHt also solves fine tuning flatness problem. Early universe inflates very
rapidly, a(t) becomes so big that universe is effectively flat. (Technically curvature does not
gravitate very much.). Then eHt switches off and we have a(t) = t1/2 and then a(t) = t2/3.
But if k = 0 then ρ = ρc. But luminous baryon density is only 1 per cent of critical. So what
is the remaining 99 per cent – dark matter, So search for it began, and after forty years none
found as of yet. As well as cosmological dark matter, also need dark matter for galaxies and
clusters of galaxies.

To check if the 99 per cent is there, study accelerating universe high redshift supernova. Ruled
out, find need for only 30 percent dark matter, as it decelerates. Need something additional,
to give acceleration: 70 per cent dark energy (viz. the cosmological constant cannot be
ignored). So inflation does not solve fine tuning problem. Only fixes the sum of dark
matter energy density and dark energy, but not their redshift-dependent ratio. Nonetheless,
inflationary fluctuations work very well for fluctuations in the CMB.
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Figure 2: The variation in temperature is of order 10−5. Small departure from uniform expanding Hubble flow.gh9_f02_L.png (PNG Image, 4096 × 3300 pixels) - Scaled (28%)
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Figure 3: 30 percent dark matter 70 percent dark energy fit to angular momentum decomposition of the CMB fluctuations
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27 Quantum Gravity

27.1 Does gravity actually know about quantum mechanics? – Experimental considerations

Before discussing how one might quantize gravity we need to discuss whether we need to.
Macroscopically, there are two established sources of gravity that are intrinsically quantum-
mechanical: (i) the Pauli degeneracy pressure of white dwarf stars with Chandrasekhar mass
MCH ∼ (~c/G)3/2/m2

p, and (ii) the energy density ρ = π2k4
BT

4/15c3~3 and pressure p = ρ/3
of the cosmic microwave background black-body radiation in cosmology.
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C D

Figure 4: Colella-Overhauser-Werner experiment

Microscopically, the Colella-Overhauser-Werner experiment (1975) shows that the quantum-mechanical

phase of the wave function of a neutron of mass m and velocity v is modified as it traverses the gravita-

tional field g of the earth. In the vertical ABCD interferometer CD lies vertically above AB. The incoming

neutron beam splits at A with one component traveling horizontally to B and the other component traveling

vertically to C. The components at B and C are then reflected so that they interfere at D. With CD being

at higher gravitational potential than AB, interference fringes are seen at D. With a change in the action of

the neutron being of the form ∆I = −mgH2/v (i.e., change compared to the ABCD interferometer lying in

the horizontal), the phase shift is given by ∆φCOW = ∆I/~ = −mgH2/v~ (see e.g. Mannheim 1998), where

AB = BD = DC = CA = H , yielding an observable fringe shift at D even though H is only of the order of

centimeters and m is the minuscule mass of a neutron — it is just that ∆I is not small on the scale of ~.

Thus gravity can measure the actual value of the stationary action and thus can measure the mass m, even

though it drops out of the classical geodesic. The quantum-mechanical version of the equivalence principle is

thus that the inertial and gravitational de Broglie wavelengths ~/miv and ~/mgv are equal (i.e., interference

in the horizontal and vertical). On measuring a nonvanishing fringe shift, Colella, Overhauser and Werner

provided the first laboratory evidence of its kind that shows that gravity knows about quantum mechanics.
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27.2 Theoretical considerations and concerns

In equations such as the Einstein equations:

− 1

8πG

(
Rµν − 1

2
gµνRα

α

)
= T µνM , (27.1)

we note that if the Einstein tensor is to be equal to the matter field energy-momentum tensor, then either both

sides are classical c-numbers or both sides are quantum-mechanical q-numbers. Otherwise, if the gravity side

were to be classical while the matter side were to be quantum mechanical, then the quantum T µνM would have

to be equal to a c-number in every single field configuration imaginable, which is impossible. Moreover, from

gravitational experiments described above we know that the source of gravity is quantum-mechanical, and not

only that, we know that gravity knows it. Hence gravity must be quantized.

However, since these gravitational experiments are not sensitive to quantum gravity effects themselves (graviton

loops), for phenomenological purposes it is conventional to use a hybrid in which we keep gravity classical but

take c-number matrix elements of its source, to give

− 1

8πG

(
Rµν − 1

2
gµνRα

α

)
= 〈T µνM 〉. (27.2)

But 〈T µνM 〉 involves products of fields at the same point, so it is not finite. Thus we additionally subtract off the

infinite zero-point part and take the source to be the normal-ordered 〈T µνM 〉FIN = 〈T µνM 〉 − 〈T
µν
M 〉DIV instead:

− 1

8πG

(
Rµν − 1

2
gµνRα

α

)
= 〈T µνM 〉FIN. (27.3)

It is in this subtracted form that the standard applications of gravity are made. Thus in Σ(a†a + 1/2)~ω
we keep the Σa†a~ω term but ignore the Σ(1/2)~ω zero-point energy density term in 〈T 00

M 〉, precisely as is

done in determining the Chandrasekhar mass or the black body contribution to cosmology. Also we ignore the

zero-point pressure in the spatial 〈T ijM〉.
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As of today there is no known justification for using (27.3), with this subtracted hybrid not having been

derived from a fundamental theory or having been shown to be able to survive quantum gravitational correc-

tions. Moreover, it is this very hybrid that is used in cosmology, and the cosmological constant problem is then

the phenomenological need to make 〈T 00
M 〉FIN be small. Absent a first-principles derivation of

− 1

8πG

(
Rµν − 1

2
gµνRα

α

)
= 〈T µνM 〉 − 〈T

µν
M 〉DIV = 〈T µνM 〉FIN, (27.4)

this is not the right starting point for attacking the cosmological constant problem.

There is no apparent reason why the zero point energy density of the matter sector should not gravitate.

Moreover, while one only needs to consider energy differences in flat space physics, in gravity one has to consider

energy itself, with the hallmark of Einstein gravity being that gravity couples to everything. Hence for gravity

one cannot ignore zero-point contributions. And if we throw them away then gravity does not know where the

zero of energy is – and that is what creates the cosmological constant problem.

Moreover, even if one does start with the subtracted hybrid, then the order G contribution to gravity is given

by the flat spacetime 〈Ω|T µνM |Ω〉FIN, with Lorentz invariance allowing a finite flat spacetime 〈Ω|T µνM |Ω〉FIN to be

of the generic form −Λgµν. Thus even if one ignores the matter sector zero-point energy contributions one still

has a vacuum energy problem; with the standard strong, electromagnetic, and weak interactions typically then

generating a huge such Λ. We thus recognize two types of vacuum problem, zero-point and −Λgµν problems.
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Moreover, if we take gravity to be quantum-mechanical (as we must), it too will have divergent zero-

point contributions. However, in order to be able to discuss gravitational zero-point contributions, we need a

consistent quantum gravity, This leads us (Mannheim 2017) to conformal gravity, viz. gravity based on the

square of the Weyl tensor, viz.

IW = −αg
∫
d4x(−g)1/2CλµνκC

λµνκ (27.5)

where

Cλµνκ = Rλµνκ +
1

6
Rα

α [gλνgµκ − gλκgµν]−
1

2
[gλνRµκ − gλκRµν − gµνRλκ + gµκRλν] , (27.6)

and αg is a dimensionless gravitational coupling constant.

As has been shown in Mannheim 2017, rather than the divergent zero-point energy density in the gravity

sector being yet another vacuum energy problem, instead it is its interplay with the matter field zero-point

contribution that actually leads to a solution to the cosmological constant problem. Thus the cosmological

constant problem arises entirely due to ignoring how 〈T µνM 〉FIN got to be finite in the first place, and then using

Rµν−(1/2)gµνRα
α = −8πG〈T µνM 〉FIN as the starting point, with gravity actually being quantized by the source

that it is coupled to, rather than by being quantized on its own.

As discussed in Mannheim 2017 theory conformal gravity recovers Schwarzschild on solar system distances,

generates linear and quadratic potentials in galaxies that remove the need for galactic dark matter, solves

the cosmological horizon, flatness, accelerating universe and cosmological constant problems without any fine

tuning or any need for any cosmological dark matter, and provides a consistent renormalizable, unitary theory

of quantum gravity in four spacetime dimensions, the only dimensions for which we have any evidence.
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SUMMARY

All the big problems have a common origin: The extrapolation of standard Newton-Einstein Gravity beyond

its solar system origins.

1. Continue to galaxies get dark matter problem

2. Continue to cosmology get the cosmological constant/dark energy problem

3. Continue to quantum field theory far off the mass shell get the renormalization and vacuum zero-

point energy problems

The Standard Solution: Supersymmetry, Extra Dimensions, String Theory, The Multiverse, The Anthropic

Principle. No evidence for any of them. But until recently no evidence against any of them either.

Recent evidence against supersymmetry. Not found at the LHC. Should have been found in same energy region

as the recently found Higgs boson.

Solution: Change the extrapolation: get conformal gravity. All these problems are solved, with no need for

any of the dark fixes. Quantum conformal gravity is ghost free and unitary (Bender and Mannheim, PRL 100,

110402 (2008); PRD 78, 025022 (2008)). Through scale invariance with anomalous dimensions Higgs boson is

a naturally dynamical fermion-antifermion bound state (Mannheim, Prog. Part. Nucl. Phys. 94, 125 (2017)),

so no hierarchy problem.

MORAL OF THE STORY

At the beginning of the 20th century studies of black-body radiation on microscopic scales

led to a paradigm shift in physics. Thus it could that at the beginning of the 21st century

studies of phenomena such as black-body radiation, this time on macroscopic cosmological

scales, might be presaging a paradigm shift all over again.
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