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1 Outline

e Newton’s Laws of Motion and Gravity: successes and shortcomings.

e No ether, but what would Michelson and Morley have concluded if they did the experiment in the vertical.
e Special Relativity: how to include gravity.

e Curvilinear coordinates: accelerating observers in flat space in the absence of gravity. Mach both right and wrong.
e Newton’s Laws of Motion in an accelerating coordinate system in the absence of gravity.

e Need for Levi-Civita connection (Christoffel symbols). Role of metric. Geodesics. Equivalence Principle.

e Riemann curvature. Examples of curved spaces.

e Newton’s Laws of Motion in an accelerating coordinate system in the presence of gravity.

e Newton’s Law of Gravity in an accelerating coordinate system in the presence of gravity.

e v?/c? gravitational corrections to Newton’s Law of Gravity.

e Finstein Equations and gravitational Poisson equation in an accelerating coordinate system.

e Exact all order Schwarzschild solution and black holes.

e Einstein gravity: successes and shortcomings.

e The dark matter problem.

e The dark energy problem.

e The quantum gravity problem.

e Does gravity know about quantum mechanics: Chandrasekhar mass, Cosmic Microwave Background.

e Colella-Overhauser-Werner Experiment.

e Where did the zero-point energy go?



2 Newton’s Laws of Motion and Gravity

Newton’s Laws of Motion

e (1) constant velocity even if no force. The first law of modern physics, and not just chronologically but also founda-
tionally.

e (2) if force then F = ma.
e (3) action and reaction equal and opposite.
e First law replaces Aristotle F = 0 implies v = 0.

e Second law requires force even if only a change in direction of velocity and no change in magnitude. Thus circular
motion about a center requires a force in direction of change in velocity, i.e. force toward center not along tangent.
Ball on a string or planetary orbits. If we replace v by v + vy where vy is a time independent constant, then still have
F = ma. Galilean invariance.

e Third law is conservation of momentum, which generalizes to inelastic processes such as photon or graviton emission.
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Newton’s Law of Gravity
(2.1)

Recognizes an ordered phenomenon in nature. Universal, all systems use same Gy.

For motion of a particle falling toward the center of the earth, mass of particle drops out and Galileo’s Law
that all particles fall with same acceleration is recovered. However Newton was concerned that maybe law

should be

mgMGNé

F = m;a = 2 (22)
with inertial m; and gravitational m,, and then mass would not drop out. If masses drop out we have
MGy,
a=—j3—a (2.3)

If we know Gy (measured by Cavendish) can determine mass of the earth Mz and the mass of the sun M.

Experiment (Eotvos) showed that inertial m; and gravitational m, are equal. A key signpost for Einstein.



Successes and Shortcomings

For circular motion a = v?/r = MG y/r* toward the sun. Like ball on a string, but no string. Then get
Kepler’s Laws; Orbits are ellipses with sun at a focus of ellipse, v* = MyGy/7, equal areas in equal times.
T? = 4mr3 /M. Gy. Replaces Ptolemy.

-E-I:FE

Dbl Velaslly thmicacd

o I T F ¥
13 18 20 asr 4 & ]

Mpan DELEaee From: Soee [Astiorecmmscal Lindes)

Keplerian expectation for planetary orbital velocities — Mercury and Uranus problems



The concern of Mach

Consider
x = 0, (2.4)
in an inertial frame.
Set
/ 1 2
X =X+ igt , (25)
then
X' =g (2.6)

in a noninertial frame.

Mach: local physical laws are determined by the large-scale structure of the universe, i.e. interaction between
local and global fixes inertial frames. Mach both wrong and right.

But is gravity just an inertial force? L.e. real or fake?



3 Special Relativity

Maxwell equations:

OFE 0B
V.- E=L VxB-uwals=uJ, V-B=0, VxE+2= =0
€0 ot ot
Note: 4+4
In vacuum obtain wave equations
O’E 5 0’B 5
MOEOW—V E =0, Ho€o 912 — V°B =0,
le.,
1 0*E 1 0°B 1
——>—-V’E=0, S——-V’B=0 =
¢ Ot? ’ c2 Ot? ’ c (po€o)t/?

Thus unify electromagnetism with light and determine the velocity of light.

(3.1)

(3.2)

(3.3)



Problems:

(1) In which frame do we measure ¢?

(2) Charge at rest produces an electrostatic field. Charge in uniform motion produces a magnetic field. But if keep
charge at rest and have an observer move past the charge with a uniform velocity, then what does observer see - electric or
magnetic? Sees both (cf. Lorentz force F = eE + ev x B). Thus E and B fields have no independent meaning.

(3) If keep on accelerating with F = ma could we eventually go faster than light?

(4) Maxwell equations are not Galilean invariant. They are Lorentz invariant. For z,y, z,t there are three rotations
around z, y and z axes, such as

2’ = cos Oz + sin Oy, y' = —sinOx + cos 0y, 7=z (3.4)
that leave
.’L‘2 + y2 i Z2 — 23/2 _|_y/2 + 2/2 (35)

invariant. But also three boosts that mix tx, ty and tz, such as

ct' = sinh 0z + cosh Oct, 2’ = sinh fct + cosh 0z, 2=z sinhf=v/c(1—0v?/A)?, cosh® =1/(1 —v?/c?)'/?

(3.6)
and leave
02t2 o $2 . y2 . Z2 — C2t/2 . x/2 o y/2 o Z/2 (3_7)
invariant. Similarly,
1 0 1 0
S v AR S v 3.8
c2 Ot? c2 Ot'? ’ (38)

while E and B mix. Newton’s Laws are not Lorentz invariant.
(5) Wave carries energy and momentum. How is this transported. Maxwell answer: there is a mechanical ether.



4 Michelson-Morley Experiment
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Michelson-Morley Experiment

If one beam moves parallel to ether and other arm perpendicular to ether should see a fringe shift at detector. None seen.
So no ether. However, the vacuum is not what it used to be. It has come a long way since Bernoulli. Quantum field theory
vacuum is an ether, just not a mechanical one. We can create particles out of the vacuum, and now we have dark energy.

However, if Michelson and Morley had performed the experiment in the vertical, then light in horizontal arm would sag
because of gravitational bending of light (key result of General Relativity), and they would have concluded that they had
found the ether.

Einstein: light does not obey v — v+ v(. Rather it obeys ¢ — ¢. But velocity is space over time. So both space and time
must vary — Lorentz contraction L' = L(1 — v?/c?)'/2, and time dilation ¢ = ¢/(1 — v?/c?)"/2. Now observers moving with
uniform velocity can all describe the same physics. Generalizes Newton’ First Law to velocities up to velocity of light.



5 But what happens to Newton’s Second Law of Motion?

Einstein: there can only be one invariance law in physics, so make Newton’s Laws of Motion be Lorentz invariant, the
relativity principle. But relativity requires four-vectors not three-vectors and only have the three-vector dx/dt. So introduce

contravariant four-vectors
ot = (ct,x,y,2), dz"' = (cdt,dz,dy,dz)
and covariant four-vectors
r, = (—ct,x,y,2), dr,=(—cdt dx,dy,dz).
We can now form an invariant, the proper time
ds? = —dr'dr, = Fdt* — da* — dy* — d2*.

with summation over repeated index p. Thus we now introduce " = dz*/ds, u, = dx,,/ds with

dz ( 1 Uy Vy Uy ) dx
_— ( 1 , v = —

ds —02/2)/27 (1 — 02 /)27 (1 — 02 /2)Y2 (1 — v2/c2)1/2 dt
and obtain
dxt dx
[y— i
Ul = s ds ’

i.e., four from three via a constraint.

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

To take care of the minus sign we introduce a rank two symmetric METRIC tensor 7,, = n,,, with ten independent

(5.6)

components
—1 0 0 0
o 100
=10 010
0 001
and take u to range over 0,1,2,3, i.e., t,x,y, 2. Then set z, = n,z", dv, = n,dz", s* = —natz’, ds* = —n,dztds”.

This seems to be just an inconvenient nuisance. However, Einstein turns 7, into gravity.
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Introduce four-momentum

= meat = (B/e.p) = (s () 57)

It obeys —pi'p, = m*c* = E?/c* — p?, i.e., E? = p*c* + m?*c*, and thus E(p = 0) = mc*.
For force we only have a three-force f = dp/dt. So introduce a four-force

J-v ]
= . 5.8
9 (02(1 — 02V (1 — 2/ c2) 12 (58)
Then with f = dp/dt we have
>zt dpt
— 2 gt 5.9
e s ds 7 (5.9)

Thus now we have Newton’s Second Law of Motion in a form that observers moving with any uniform velocity up to that
of light can all agree on. And now no observer can go faster than the velocity of light.

Newton’s Third Law of Motion is direct: conservation of the total four-momentum: »_ dp"/ds = 0.

11



To take care of the Maxwell fields we introduce an antisymmetric rank two tensor F* = —F"" with six independent
components, just as needed for the three E fields and three B fields

0 E E, FEs
B, 0 By —B
“FEy, -B; 0 B
_F; B, —-B, 0

P = (5.10)

To take care of the charge and current we introduce a four-vector J* = (p,J), with four independent components and
write the Maxwell equations with sources in the form

0
nwy o (2 HvoT _ —
o,F* = JH, o, F,r = 0, 0, = St (5.11)
where €797 is a fully antisymmetric rank four tensor. So all of its indices have to be different and €23 = —¢!02 = 1.
The Lorentz force equation with F = eE + ev x B generalizes to

dp" dx,
— =eFM"— 5.12
ds c ds ( )

12



6 But observers can accelerate

Consider a free particle obeying
d2£a
ds?

=0, ds? = —1apde“deP.

(6.1)

Now change to some new coordinates z* so that the £¢ depend on the z#. (I.e., x = rsinf cos ¢,y = rsinfsin ¢, z = rcosb.)

Thus we obtain

d o dxt\ 08 d?xt N 026> dat dz¥ B
ds \Oxt ds ) Oxt ds® = OxrOx? ds ds
Now multiply by dx}/0¢%, and using the product rule

G_ﬁ@ — 5

0E« Ot a
we obtain

d?a? y dzt dz”

- -0
ds? T ds ds ’
where we have introduced the affine connection Ffw defined by
F)\ _ 8_33)\ a2€a
e 9gx Qxrdx?
Similarly we can write the proper time as
a aga 856 v v
ds? = —1apde*de’ = —nug oot s et = =g datda,
where
& 9¢P

guu(x) - naﬁﬁaxy'

13
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(6.5)
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(6.7)



For polar coordinates for instance —c2dt? + da? + dy? + dz? =

-1 0

Nap =

o O O
S O =

Thus the metric can depend on the coordinates,

—Adt? + dr? + r2d6? + r? sin? 0d¢?, so

00 100 0

00 010 0

1ol” 9= o o0 o0 (6.8)
01 0 0 0 r2sin®d

i.e., curvilinear coordinates.

We need to be able to remove all trace of the original £* coordinates and write the connection entirely in terms of the z*

coordinate system. To this end we evaluate

Ogu, _ 0% 0 06 0%
o P unde oxv 1P un Dv O
N Oz T G o'
= F?\ugpv + I 9o (6.9)
Thus we obtain
Wy, 09w 091 _ I I T T T g, = 27 6.10
oxA Ok o Oxr? o )xugPV + 19t p)\gPV + pr9ox — Lyu9ox — L y\Gpp = /\ugpl/' ( . )
Now introduce an inverse metric that obeys
gyag.‘w — 52 (6.11)
Thus we obtain
1 g
Lo = 59" (Oubov + 0uGop = ogu) (6.12)
With this form for the connection
d?a? y dztdx”
ds? * wids ds (6.13)

is known as the geodesic equation. All accelerating observers agree on this. No need for Mach.

14



7 Polar coordinate example

With ds? = 2dt? — dr? — r2df? — r?sin? d¢? and

-1 0 0 0
[0 10 0
Iw =110 02 0 ’
0 0 0 r2sin®#
we obtain
0o = —T, [, =—r sin” 0,
0
¢ —r¢ _ cosv
09 » " sing’

Equations of motion that follow from

d?a? y dzt dx”

1
Y =1¢ ==
rh Or 7“7

—1

S O O

F55¢ = —sinfcos?b.

I, — =0
ds? T ds ds
are
. . . 9. 0 ..
i — 10 — rsin® 0¢? = 0, gb—l——gb?*—l—QC?S o0 = 0,
r sin 6
when v?/c? < 1.
When 6 = 7/2 these equations integrate to
. 2. i . J?
o+ =¢i =0, rlo=J = i-r¢’=i—-—
r T

to give conservation of angular momentum J and energy E.

15

S O = O

0
0
1/7’2
0

. 2. :
0 + =0 — sin 0 cos 0¢* = 0,
r

0
0
0
1/(r%sin®0)
1
¢ _po _
Iy, =I5 =-

J

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)



8 Transformations

Rotation: write

o' = zlcosf + 2*sinf, 2% = —z'sind +2°cosh, 2 =2’ (8.1)
in form 2/ = Rijxj, ie.,
o't cosf sinf 0\ [zt 0zt )0zt 92 )0x* O )0x\ [}
7% | = | —sin@ cos 0| | 2* | = | 02"*/0xr 02%/0x* 02"*)03 | | «° (8.2)
7' 0 0 1 7’ 0z /0xt 02" /0x* 02 )0x? 3

We can also write R! j as

g =9
T 0wl
Any quantity A(z) that transforms as A(x’) = A(x) is known as a scalar, or rank zero tensor (cf. (z1)*+(2%)*+
(%)% = (2")*+(2"%)*+(2")?). Any quantity A'(z) that transforms as A”(z2') = R'; A/(x) is known as a vector,
or rank one tensor (cf. dipole moment). Any quantity AY(x) that transforms as A"/ (2') = R', R/, A*(z) is
known as a rank two tensor (cf. quadrupole moment or Maxwell stress tensor).

(8.3)

16



Lorentz transformation: write

2V = 2%cosh @ + zlsinhf, 21 =a"sinhf+ xlcoshh, 2% =2 o =2 (8.4)

in form o = A" 2% ie

' coshd sinhf 0 0\ [2° 0z /020 02" )0zt 02°/0x* 02" /03 [2°
| | sinh@ coshd 0 O [ 2! | | 02"/02" 92" /0xt 02" )Ox* Ox't)Ox? | | & (8.5)
e 0 0 10| [|2*] |027/02° 02%/0x' 02" /0x* 02"*)02 | | 2° '
' 0 0 01 7’ 0z /020 023 )0zt 02 /0x* 023023 ) \ 2?
We can also write A*, as
W
A = gzy. (8.6)

Any quantity A(x) that transforms as A(z") = A(z) is known as a scalar, or rank zero tensor (cf. n,,x"z" =
— (@) + (1) + (2%)* + (27)? = (= (2")* + (@) + (") + (2P)? = ga™2™). Any quantity A*(x) that
transforms as A" (x") = A* A”(x) is known as a vector, or rank one tensor (cf. electromagnetic current J*).
Any quantity A" (x) that transforms as A (2') = A# A" A™(x) is known as a rank two tensor (cf. F*, g,
or energy-momentum tensor TH).

17



In the event that every element of A* is independent of the z# the transformations are LINEAR, and are
changes involving uniform velocity observers, just like Newton’s First Law of Motion. In this case the metric
is independent of the coordinates.

In the event that any element of A*, depends on the z# the transformations are NONLINEAR. (cf.
r =rsinfcos¢,y = rsinfsing, z = rcosf), and are changes involving nonuniform velocity observers, such
as accelerating observers. These transformations are known as GENERAL COORDINATE TRANS-
FORMATIONS. In this case the metric depends on the coordinates.

While quantities such as dz*/ds and g, transform as vectors and rank two tensors under general coordinate
transformations, neither d?xz*/ds? or the connection

1
M, = 59” (019ov + OvGop — Ougur) (8.7)

transform as vectors or rank three tensors under general coordinate transformations. However, as we now show
the geodesic with the specific relative weight

d?a? LT dxtdx” 0
ds? "Wods ds

(8.8)

is a general coordinate vector.
Given an arbitrary g¢,, how can we determine whether or not it is a transformed 7,,. Answer given by
Riemann tensor

A A A A A
R =0, — o1, + U1, — LT (8.9)
A

and 1t is a rank four general coordinate tensor. Hence, if even as few as just one component of R%, . does not
vanish in any given coordinate system, RAW,{ does not vanish in any coordinate system. Riemann: a space is

flat if and only if all components of RAW,i — 0. Thus R, # 0 means space is intrinsically curved. Einstein:

UVK
This is GRAVITY.

18



9 Tensor analysis

Given that in a coordinate system x* we have

(9513)‘ aZga
0EY Ozt Oz’

A
[, = (9.1)

then in a coordinate system a* we have

ax/)\ 82504

o0& Ox'rox'v

020z O [ 0x” 9E°

~ OxP 9L Da'm (6w’” 895“)

02O (aaz" ozt Q¢ 0?27 85“)

A
FW =

= 2
Oz DS \ O 92" Dxo 0" | DahOT D (9:2)

Thus
P 0z dx” Ox" +8az“ Oz |
Y Qe Oxv Ox'v O QxP Ox'hOxV

The first term is what is required of a tensor, the second term is not. Thus Fﬁy is not a rank three tensor.

(9.3)
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Noting that

ox'* oz
Oxr Ox' 7
on differentiating with respect to 2’# we obtain
or'r  0%xr oz’ 0z° 0%x™
Oxr 0x'"Ox'” i 02" Ozt Oxrdxe

so that
Ox' Ox? Ox* ) ox'  O%xr Ox' Ox” Ox* ) oxP 0x° 0%z’

A
Ly = oxP Ox'v Ox'v " + Oxr Ox'mox"™  OxP Ox'v Ox'™ °F  Ox' Ox'M OxrOx®’

and

A dz'™dz"” 9z’ da” da” ,  dzlda’ %"
" ds ds Oxr ds ds °° ds ds OxPOx®
For the acceleration we note that

d2aA - d 6%“@ B Gsc’Adep+ 92" dxP dxt
Oxr ds | OxP ds2 = OxPOx" ds ds

ds2  ds
Thus finally we obtain

dQQE’)‘ "
I’ = [”
ds? o ds ds OxP \ ds? T lon ds ds

Thus the geodesic equation is a general coordinate vector equation.

d?z? dxt dx¥ dx’
M= ) =er? .
m<d82+“”d3 ds) “ s

dz'" dz" Ox’ <d2:cp dx’ dcc“)

Thus for Lorentz force

20
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10 Covariant derivative of a contravariant vector

Since Ffw = (1/2)9* (8,901 + 01 gou — Opg,u) is N0t a tensor but g, is, 9, = 9/dx# cannot act as a vector
(except as we see below when it acts on a scalar). So what do we do with 9,V" where V# is a contravariant

vector that obeys

Differentiating gives

Next, evaluating

Thus we obtain

Hence

1s a rank two tensor.

I\
V@) = ‘Zj _V¥(z).

oV'A B ox' Oz VP 2N Oxt

ox'm  OxP Ox'M Ok * OxPOxt Ox'H

Ve

VT

[y = O 0z D" e _ OxP dOx* 9%z \ Ox"
wt \ Qxr Ox' ox'r 7T Qx Ox't DxPdxs ) OxT
_ oxr' O"F o ort 2™ -
Oxr Ox'* 7" o1 ArPOLE

oV'A
ox'H

Ny v
V= oxP Ox'H

I\ K p
0z Ox (8V N Fgﬂva) |
oxt

oV’
V,J/p — a— + FﬁgV”
xh

21
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(10.4)

(10.5)



11 Covariant derivative of a covariant vector

A covariant vector transforms as
. ox’
V(') = 55 Vil).
Differentiating gives
ov,  0Ox’ 0x" 9V, Ox?

ox't — Ox' Ozt Oz + oxvoxm

Next, evaluating

Ox'* Ox° Oz ox'r  9%xr \ Ox7
F/)\ V/ — Y ‘/;_
p A (&UP 927 rn 7 B (9:1:’“8:1:”/) Oz
0x? Ox" 0’
_ p T
- Oz Oz’ LonVo (93:’“83:’”‘/’)

Thus we obtain

ov, ., Oxfox* [0V,
ox'n LV = Oz O’ \ Hzr LroVo |
Hence
Wy o
ViV, = ot = T0V,

1s a rank two tensor.

Thus Maxwell equations covariantize to

V,FF = J, eV, Fy. = 0.

22
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12 Generalizations and the special role of the metric

V,\TH = o\ TH + FKUTUU + FKUT’MU,
VT, = o\T", + I\ [T, — I'S, 17,

VaTyw = 0T — T, Ty — T3, T (12.1)

While rule holds for every index of a general tensor such as for instance 7"

no indices. Thus for a scalar S we have V,5 = 9,,5.
For the metric we have

0 there is a special case, viz.

Vg = G — 13,900 — TS G- (12.2)
Now previously we had shown that
OGu 0% o¢’ T 350‘ 0%¢"
grr P 856“8562 oz 1Pz 8:%’/03%
0> O¢ 0EX O&
P
= g ) Y Dt 9o 1
— Fiﬂgpy + F)\ygpu (12.3)
and shown that this relation is satisfied by
1
F/);y — 29)\0 (augay + aygau - 8ag/w) . (124)

Thus the Cartesian coordinate relation dyn,,, = 0 generalizes to the general coordinate relation
v)\g,uu — 8)\gw/ — Fiﬂgm/ — Kyg,ua = 0. (125)

23



Similarly, covariant derivatives are distributive. Thus since we have 0)[V#W"] = 0\|[VF WY + VFO,\[W?] in
the Cartesian case, in the general case we have

VA[VEWY] = VAV + VIV, [WH], (12.6)
Also we have
ValVil = Valgw V'] = ValguwlV" + g VAV = gu VAV"]. (12.7)
Thus we can move the metric in and out of covariant derivatives.
Since
Vaguw =0 (12.8)
we have
9" 9" "N g = V9" 9" 9] = Vag"" = 0. (12.9)
With V#W,, being a scalar we have
VAIVIW,] = O\ VIW,] = O\ VW, + VIO\W,], (12.10)

but we also have
VA[VIW,| = VA[VHWV, + VEV\W,] = [OWVF + T VYW, + VEOW, — FKMWV}
= {MV’“‘]WM + Vﬂa)\[WM] + FKVVVWM — V”FKHWV
= O\[VFIW,, + VFO\W,]. (12.11)
We thus see that if the covariant derivative of a contravariant vector contains plus times the connection term,

then the covariant derivative of a covariant vector must contain minus times the connection term.

24



We also use the metric for raising and lowering.
Vi =g"V,, V,=g.,V". (12.12)

At any point we can remove the connection. We had shown that

ox' 0x® Ox* ) 0x® Ox" Oz

[ = _
2 Qe O’V O’ % Ox’v Ox'M Ox Oxr
o0x°’ Ox" %) I\ 82 A
- (T | (12.13)
ox'v Ox'* \ Oxr 0x°0x"
To remove connection at the origin set 2" = 2* + (1/ 2):17“33”[F2y]0 near the origin. This gives
81’/)‘ azxm
[l = = [0 = (T30 = 0. 12.14
axp [ O’I-{]O axaaxﬁ [ 0‘/{]0 [ 0—,{]0 ( )

25



13 The determinant

Set g = —Det|g,,]. For Minkowski with ¢, z,y, z as the coordinates we have
-1 000 -1 0 0 0
. 0O 100 1/2 _ wo_ 0 100 1/2 __
0 001 0 001
For Minkowski polar with ¢, 7,6, ¢ as the coordinates we have
-1 0 0 0 -1 0 O 0
10 10 0 12 2. o | 0 1 0 0 21
9w =1 0o 0o ,2 0 , g/ =r‘sinf; g = 0 0 1/ 0 9= (13.2)
0 0 0 r’sin’f 0 0 0 1/(r’sin®6)

In integrals the measures for the two cases are [ dtdvdydz and [ r?sin @dtdrdfdg. Thus in both cases we have [ g'/2d*z. So
g'/? is the Jacobian. To see why this is we note that

0x? 0x”
g:w(x/) _ axluﬁgm(x). (13.3)
Taking determinants we obtain
0x? || 0x7
r_ nje _ "N o1/2
g - ax/u ax/y g7 g - J(x7x )g . (134)

Thus the invariant measure is [ g\ 2dx.

26



Now we evaluate the contracted

1, I
FZV = 59” (OuGov + Ovgop — Oo ) = égﬂ v9uo- (13.5)
Symbolically we need to evaluate Tr[M 19, M]. We can work in the diagonal basis in which the eigenvalues of M are on

the diagonal. Thus we obtain

MO 00 YN 0 0 0N /X 0 0 0
10 a0 0 Lo, Lo o1 0 0 0N, 0 0 I
M=10"0 ol M™M= 4 7 0 0 0 X o Trace[M 'M') =) = (13.6)
0 0 0 A o 0o o 1/x)\o 0 0 ¥
Similarly,
Det[M] = T, \;, 0, log[Det[M Z "y — Trace[M ~'M]. (13.7)
Thus
1
I, = 58,, log g = g~ '%9,¢'/2. (13.8)
Since
ov?e
VVP=—4+T1% V° 13.9
oo+ (13.9)
we have
ov?e ov?e
VI = S VT = S Vg gt — g R, (gM2V) 13.10
VoV = T, 57 TV g =y g (13.10)
For a scalar V7§ is a vector, so that
vV, VS = g7120, <g1/29”875) . (13.11)
Evaluating with ¢'/? = r%sinf, ¢'" = 1, ¢" = 1/r%, ¢*® = 1/(r*sin? ) for polar coordinates, we obtain
1o [ ,08 1 0 0S 1 0?8
V,VHES = - — — | sin# . 13.12
2or ( (97“) T s 06 (Sm ae) T 25?004 (13.12)
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14 Gravity- a first look

Having shown that Newton’s Laws of Motion have to be modified to make them Lorentz invariant, the obvious thing to do
was to stay in flat space and write gravity as an analog of the Lorentz force as written in an accelerating coordinate system
in flat space with curvilinear coordinates:

R dzt dx’ dz’ 1
M= ) = I = 20" (0,900 + Ovou — OwGu) - 14.1
m(d82+“”ds ds) s w = 59 (OuGorv + Ou o Guw) (14.1)

However that would not lead to m; = m,. Einstein: if we could pull gravity out of the Ff)l, term we could get m; = m,. But
then have to replace Lorentz invariance by general coordinate invariance. So look at non-relativistic limit of geodesic

d?a? dzt dx”
[ = 14.2
m<d52 s ds) 0 (142)

Taking only the 00 component of g, to differ from 7,, we obtain

ds* = —g,,datdx” = Adt*[—go — dr®/c*dt?] = *dt*|—goo — v* /P, (14.3)
and thus for v < ¢ and ggg = —1 + hgg where hgg is small, then to lowest order in hgy we can set
2 2
d82 = CthQ[l - h()()], F60 = —%arhoo m {% — %(‘Zho()] = 0. (144)
If we now set hgg = —(2/c?)¢ we obtain
d*r
m |:ﬁ + &w] = 0 (145)

So finally, if we set ¢ = —M Gy /r, we obtain Newton’s Law of Gravity

d?r mMG N
mdt2 i (14.6)

while establishing that m; = m, = m.

Concerns: is this metric real or fake. Even if not fake (i.e. cannot get back to 7,,), can we make it general coordinate
invariant, and if so, would we actually recover Newton’s Law of Gravity, and could we then get v?/c? correction to Newton.
Thus need to ask what Newton’s Law of Gravity and the second-order Poisson equation that it satisfies would look like in
an accelerated coordinate system. Solution: curved space.
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15 Examples of curved spaces

A a9 A A A A
R, =0kl — 01, + FZUFW — FZKFW. (15.1)

Gauss, Bolyai and Lobachevski

ds? = dr? + r2d6? — d2?, 22 =72 41, zdz = rdr
2 2 2 102 rdr? dr’ 2 102 Lo
ds® = dr® +r-df _1+T2:1+r2+rd0 = —gdrtdx”. (15.2)

R)\/um = _<guug)\f<; - g/mg)\u)- (153)
The 2-dimensional space of (r, ) has positive signature, but it is embedded in a flat 3-space with Minkowski signature. The
2-space is the space of Gauss, Bolyai and Lobachevski — a space of constant negative curvature, since it is a surface of a
hyperboloid in a 3-space, and is thus not flat, since neither a sphere nor a hyperboloid could be transformed into plane.
Curvature induced on the 2-space by the embedding. Euclid’s fifth axiom: if a line traverses two other lines and the two
interior angles that it makes with the two other lines add up to less than 180 degrees, then the two other lines must intersect.
It does not hold. So non-FEuclidean geometry .

Robertson-Walker
Constrained 4-space
ds® = da] + da + dwj + da?. (15.4)
Impose
x% + x% + x% + xi — a2, r1dx + xodxs + 23d23 + 14dcs = 0. (15.5)
Eliminate x4
[z1dxy + wodxs + 3d23]?

ds* = da} + das + da} 15.6
S x1+ 332+ -753"_ CLQ—J;%—F,I'%—FQZ'% ( )
Rewrite in polar coordinates
2dr? dr? 1
ds? = dr? 4+ r2d0° + 12 sin20dd® + — = — 112002 1 026in%0de?, k= —. (15.7)
a?—r2 1 —kr? a?
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Generalize to
dr?
1 — kr?

ds* = dt* — a*(t) + r?df* + r* sin? 0dp* (15.8)

k > 0 is 3-space of constant positive curvature, £ = 0 is 3-space of zero curvature, i.e. 3-flat, &k < 0 is
3-space of constant negative curvature. a(t) describes the overall temporal evolution of the 3-space. This is
the Robertson-Walker metric of modern cosmology associated with an expanding universe.

de Sitter

ds® = dt* — 2 [d?“Q + r?df* + r* sin? «9dgb2] = —gpdztdx”. (15.9)

R/\,uw{ - HQ(QWQ/\/@ - g,tmg)\y)- (1510)

Associated with the inflationary universe, the accelerating universe, and dark energy.

Schwarzschild

— r*df* — r*sin” Odg? (15.11)

oM 2
ds® = Adt? (1 — G) dr

Ar ) 1—2MG/r

Describes Newton’s Law of Gravity and gives rise to relativistic corrections, leading to precession of planetary

orbits and gravitational bending of light. All nonvanishing components of the Riemann tensor proportional to
—12MG /c*r.
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16 Curvature

What is the status of the Riemann tensor
R, =00, =0, + 1010 =TT

1 s ks pk
Consider V,V),. It is a covariant rank two tensor. Thus

ViViVy =0V, V, = Tp, V)3V, =TV, Vi
Identifying covariant derivatives we can write

V.V.,V, =00V, — rﬁum — T, [0\V, — Vo] — rgu 0,V — 9, V,]

= 0.0,V — 0.y VA = T7,0.Va = T, [OhV, = TS, Vo] = Ta, [0, Vh = T, V0.

Similarly we can write

vl/vmvu — aua/fv,u - 31/112#‘4 - Fiy,al/v)\ - Fl>/\/{ [a)\v,u o K[LVJ] o Fiu [aﬁv)\ o FZ/\VU} .

Thus we obtain
v/{vyv,u - vyvmvu - _aﬁrﬁuv}\ + al/FéluV)\ + FQMFZ/\VO o F/V\,MFZ/\VU

= —aﬁrgﬂvA + a,,rgﬂvA + rgurgnw - rgurgnvx

Thus finally we obtain
V.V, V, =V, V.V, =—R' Vi=—Ryu.V"

UVK

(16.1)

(16.2)

(16.3)

(16.4)

(16.5)

(16.6)

We thus establish that covariant derivatives do not commute and that the Riemann tensor is indeed a tensor,

i.e., under a general coordinate transformation it transforms as

, 0z 02" 927 O2°
RA;LV/{('CE > - ax/)\ ax/'u ax/y ax/nRaﬁ’Yé(aj)'

(16.7)

Thus despite the fact that the connection is not a tensor, the Riemann tensor is indeed a rank four tensor.
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17 The significance of the Riemann tensor

1 o
R, =0.I), -9+ ) —T1T), I, = 59)\ (DuGov + vy — Osluw) - (17.1)
If g,,, = 1, then space is flat and RAW,Q = 0. If g, is coordinate equivalent to 7, i.e., if
Oz 0z
g,uy - axlﬂ-axlynaﬁ7 (172)

A

L 18 10t zero, then metric cannot be coordinate

then RAW,{ is still zero. If at least one component of R
equivalent to a flat metric. Space is then not flat, since RAWK cannot vanish in any coordinate system. Thus
the curved space examples given above really are not flat.

Number of independent components of the Riemann tensor — not 64

Following some algebra rewriting the connection in terms of the metric yields

1 32% (929 32% 329
Ry = = G- o ARNE 4 N D NN A A i 17.3
Au 2 | Oxkxrt  Oxbxr Oxvat  Oxva) n [ VAT iR KA W] (17.3)

Thus we establish

o symmetry: Ry = Ru

o antisymmetry: Ry = —Ruwe = =By = + R

o cyclicity: Ry + R + By =0
From the antisymmetry condition the Riemann tensor has to antisymmetric on the first two indices, and
antisymmetric on the last two indices. Thus 6x6=36=21415. But from the symmetry condition it has to be

symmetric on the interchange of the first two indices with the last two, so 21. Then the cyclicity condition is a

completely antisymmetric condition just one condition, so finally 20 components. In N dimensions would get
N?(N? —1)/12.
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The 10-component Ricci tensor and the 1-component Ricci scalar

Rue =9V Ryww = Ry,  R=R® = g"R,,. (17.4)
The Weyl tensor
1 1
C)\/wn - R)\/M//i + 6R a [g)\l/g/m - g)\/ig,uu] - 5 [g)\I/R/m - g)\HR/M/ - g/u/R)\/i + g/mR)\l/] ) (175)

obeys ¢"'C wus = 0. It has the property that under a local rescaling of the metric (local conformal transfor-
mation) g,,(z) — €**Wg,, ()
Crwr — 620‘(‘7”)(/}#% (17.6)

with all derivatives of a(x) dropping out (just like a gauge transformation). Under conformal transformation
ds? = e*Wds?, ds? =0 — ds® =0, (17.7)

so light cone is left invariant.
Geometry is conformal to flat (i.e., ds* = 2@ [2dt? — da? — da — dx3)), if and only if Cy,,, = 0. On

introducing the conformal time
cdt

ch—/@ (17.8)

we can rewrite £ = 0 Robertson-Walker metric as
ds* = dt* — a®(t) [dr* + r*d6” + r*sin® 0d¢*] = a*(t) [Pdr® — dr® — r*d6” — r*sin® 0d¢?] . (17.9)

Thus for Robertson-Walker metric the Weyl tensor vanishes. The dynamics thus only depends on the Ricci
tensor and Ricci scalar, just as we will see for cosmology:.

33



18 The Bianchi Identities

As noted above at # = 0 we can make the connection vanish.Thus at that point we obtain

10 (92g>\y B aQQIuV . 829)% aQQ/JH
20, |Oxfzt  Ozrzr  Oxvat  Oxva|

VnR)\uwa —

Evaluation then gives

Oy Ry + OBy + Oy Ry ey = 0.
Thus in an arbitrary coordinate frame we have

Vo Bk + Vi By + VR ey = 0.

On multiplying by ¢ we obtain

VR — ViR + V'R, = 0.
On multiplying by g"* we obtain

V,R—-V"R, — V'R, = 0.

le.,

1
v, <RW - §g/WR) = 0.
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19 The energy-momentum tensor

Consider a general action for a scalar field of the from I = [d*xzL(¢,d,¢), with associated Euler-Lagrange equation of

motion

oL oL
a (aaw) g5~

Ty = — u¢

Introduce the energy-momentum tensor

L
av¢ G

Differentiating and using Euler-Lagrange equation gives

DT, = — (8"0,0) L ¢a”< oL ) +0,L

v p 90" &
v o OL oL 0L L
__(88,u¢)m_ u¢8¢ 8¢ ,ugb 88¢88¢ 0.

Thus the the energy-momentum tensor is conserved.
For L = —(1/2)0,90"¢ — (1/2)m*c*¢? (i.e., with i = 1), we obtain

0,0"¢ — m2c?p =0,
1 1
T;w = M¢8V¢ — N <§8ﬁ¢aﬂ¢ + §m262¢2) )
aMT,uu = 8,ua’u¢ay¢ + au¢8uau¢ - 8V8H¢aﬁ¢ - m26281/¢¢ = 0.

To see the physical meaning of 7),, we note that

To =+ 5 [-8 + Vo Vo +- m’e’] = 2 [+ V6 Vo + m?es?]

= kinemc energy plus potential energy
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20 Perfect fluid
Consider a complex scalar field with action, equation of motion, and energy-momentum tensor of the form
Ig=— / d%% [0,0°0") + m*c¢*¢] ,
9,0"p — m*c*p = 0, 0,0"¢* —m*c*¢* = 0,
T = 51067000 + 0,6'0,0) = S [0°0020° + 2] (20.1)

The wave equation has mode solutions of the form ¢ = eiwnt+ikT , OF = eiwort=thT where wi/c? = k% 4+ m2c®. The general
solution to the wave equation is thus of the form

o) =) [a/;e‘“’“”““'x + bzei”’“t_ik'“] EEAGOEDY [a;’;eiwkt—ik'w n b,;e—’wk’f“’”] . (20.2)

If we insert this form into T}, we get a double sum ) ; > ;.. This is coherent.
However if we add the modes incoherently we only get a single sum > ;. Le., we replace (A; + Ag)? = A? +2A, Ay + A}
by A3 + A2, with no cross term. For a single a; mode with ara; = c¢/Vwy, where V' is three volume we obtain

ck,k
T, = 1~ 20.3
where k" = (wi/c, ks, ky, k2), ky = (—wi/c, kg, ky, k). Thus for k* = (wi/c, 0,0, k) and k* = (wy/c, 0,0, —k) we obtain
wr/cV 0 0 k/V wr/cV 0 0 —k/V
0 00 0 0 00 0
Lulk)=1"49 90 o0 o TwlERI =1 g 00 0 (204)
k/V 0 0 ck?/Vwy —k/V 0 0 ck?/Vuwy
Adding them together incoherently gives
2wi/cV 0 0 0
0 00 0
0 0 0 2ck?/Vuwy
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Repeating for modes in the k,, —k,, k,, —k,, directions we obtain

6wy /cV 0 0 0
0 2ck? |V wy 0 0
T = Tiw(@) + T (y) + T (2) = 0 0 22/ Vi, 0 (20.6)
0 0 0 2ck? |V wy,
Defining the energy density p = 6wy/V, pressure p = 2¢’k?/Vwy,, and the fluid velocity u* = (1,0,0,0),
u, = (—1,0,0,0) as normalized to the timelike u*u, = 1, u’u” = —1, we obtain the symmetric
p/c 0 0 0
0 p/lc 0 0 1
T, = = — y |- 20.
M 00 ple 0 (o + plu, + pry] (20.7)

0 0 0 p/c

We can now covariantize and obtain the symmetric general coordinate rank two tensor

1
Tw=1T,,=

o phwany +pgus ], v = gy’ = 1, (20.8)

where u# is a 4-vector and p and p are general coordinate scalars. Also T}, is conserved, and thus obeys

v, " = 0. (20.9)
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21 The Einstein equations

We had seen that we could introduce a weak gravitational potential ¢ by setting gog = —1 — 2¢/c?, with the
point particle action taking the form

2
I = mc/ds = mc/[—gOOCthQ +da?)? = mc2/dt [1 + ¢ + U—] = /Ldt (21.1)

2 22
at low velocity. This yields a Lagrangian and Euler-Lagrange equation of the form

2 d
L =mc* +m¢ + %, mx = m£ (21.2)

viz. the standard nonrelativistic Lagrangian and equation of motion for a particle moving in a gravitational
potential. Thus metric is the gravitational field.

We need an equation that fixes the potential. Thus need to generalize V¢ = 47Gp and write it in an
accelerated coordinate system. We have an immediate problem: since V,.g,, = 0 we cannot build out of
covariant derivative of the metric. However, Ricci tensor is a second derivative function of the metric and it is
a tensor. Moreover from Bianchi identity we find

1
G/},V — Rlu]/ - §QMVR7 V/I/G,UJV — O. (213)
Now T*” obeys V, T"" = 0. Thus we are led to the Einstein equations

63

87TGN

Thus ten equations for ten unknown components of g,,,, which can be solved once a T}, is specified. However,

G,uu - T,uy- (214)

four general coordinate transformations. Compensated for by four components of the Bianchi identity:.
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22 The second-order Poisson equation

Try a weak gravity static, spherically symmetric line element of the form
ds® = dt*(1+ h(p)] — (1 + j(p)][dp* + p*df* + p*sin” Ode?] (22.1)

where h(p) and j(p) are small. For this metric the nonzero components of the Einstein tensor evaluate to
lowest order in h(p) and j(p) to

2 1. G 2 .
Goo=7"+=5',  Gu=—=[+ 1], Gou=—5%==L[j"+ K] = 2p[j' + I, (22.2)
P P sin“ 6 2
where the prime denotes d/dp. In the nonrelativistic limit with a mattter energy-momentum tensor (pys/c +
par/c)uyu, + (par/c)n with par << par, the Einstein equations reduce to

.y 2 ./ 87TGN

Go=J"+—J =———pu,
P &
G = _[j/+h/] =0,
P
P>
G%:—E{”+Mq—www4ﬂ:0. (22.3)

Solution is

St
S par- (22.4)

2
j+h=0, R'+=h=Vh=
P C
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Thus with h = 2¢/c* we finish up with

Vip =

1 d [ d(b] 47rGNpM7 225)

02dp | dp 2

which we recognize as the second-order Poisson equation. For a source of radius pg and py; = Mc?/[4mpd/3),
then with ¢(0) =0, in p > py we obtain

P od MG
NS f MGy, (> p) === (22.6)
0
Finally, we can write the line element as
ds* = Adt*(1 +2¢/c] — (1 — 2¢/c*)|[dp* + p*do* + p* sin? Odp?], (22.7)

and get a huge bonus: we do not just get Newton, we get the v?/c? correction, just as needed for the orbit of
Mercury:.
There is actually an exact exterior (p > pg) solution

1 - MG /2020 ’ MGy\"
2 2 742 N N 2 2 102 2 i2 2
—( 1+ + + : :
ds codt <1 MG /28 ) ( 52 ) [dp” + p°df* + p*sin® Od 7] (22.8)

With p =1 [r — MGy/c¢* + (r* — QMGNT/C2)1/2], r = p(1+MGy/2c%p)? it is coordinate equivalent to the
exact Sohltlon found by Schwarzschild:

~1
ds* = c*dt* (1 — 2MGN> — dr? (1 — 2MGN> — 72df? — r?sin? §dg¢?, (22.9)

c2r c2r

a solution which is singular at r = 2M G y/c?, the Schwarzschild radius of a black hole.
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23 The Schwarzschild solution

For a static, spherically symmetric source such as a star we take as line element
ds* = B(r)c*dt* — A(r)dr® — r?df* — r?sin® 0d¢?, (23.1)

so that the metric and its inverse are given by

—B(r) 0 0 0 —1/B(r) 0 0 0
T T P BTN o
0 0 0 r’sin®d 0 0 0 1/(r*sin®6)
The nonvanishing components of the connection Ffw = %g)‘“ (OuGov + 0v9oy — Orgu) are given by
.2
=g Tw=—Tgpr Te=The=l TheTh-1
Fg)qﬁ = Fie = %, Fg(b = —sinf cosb,
I, = ;421((7;))’ it = QB/;((?;))v Ff"t - Fgr - %((7;))7 (23.3)

where the prime denotes the derivative with respect to r. The nonzero components of G, = R, — %gﬂ,,gaﬁRag, where
R, = 8HF2A — (‘3AF2,€ + FZ/\FQH - FZKFA are given by

An?
o _ B B BA'
7 2 T 2A 0 A2
A 1 B
Cr = 202" g
G r2B"  r2A'B’  r2B"? rB’ rA’
Gop = = - : 23.4
“ = Gn2g 2AB | 4A2B | 1AB®  2AB ' 247 (23.4)
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For the energy-momentum tensor 7}, = % [(p + p)uyuy + PGy, |, with velocity uw'u, = g, utu” = —1, the only nonzero

components of the velocity are u’ = B~Y2, uy = —B2. Thus we have
B(r)p(r)/c 0 0 0
0 Awmye o 0
T = 0 0 r2p(r)/c 0 ' (23.5)
0 0 0 r2sin? Op(r)/c

The Einstein equations —(c? /871G ~)Gu =T, thus give us
B B BA 817G N

= -2 =g,
r2 * r?A  rA? A o

A B 1 B B, 87TGNA

2 12 rB A P
r?B" r*A'B" r*B? rB A 8GN ,

- - = - . 23.6
2AB | 1A2B | IAB®  2AB | 242 a P (23.6)

The third equation is not independent of the first two since V,G*” = 0. Multiplying the first equation by A/B and adding
it to the second equation gives

1 /B A 87TGN
=+ — A 23.
(5+5) ="+ p). (23.7)
Inserting this equation back into the second Einstein equation then gives
A A 187Gy rA 1 887Gy d r
. A 12— r2p= - (__) 23.8
TA r2 A P A2 i A A4 P\ T (23.8)
Integrating [ dr, identifying 4n fo drr’p = M(r)c? and setting A(0) = 1 we obtain
1 QM(T)GN B/ A’ 87TGN A 1 87TGN
2oy B A A 42 Ap. 23.9
A cr B A + A r(p+p) = r T A P (23.9)
Thus for a source of radius ry and mass 4x [° drr*p = Mc?, so that p(r > r¢) = 0, p(r > 19 = 0), we obtain
2M(T)GN - ZMGN -1 1 QMGN
Alr < =(1—- —— Alr > =(1- B(r > =—=1—-———— (23.10
(r <o) < c2r ) ’ (r>10) c2r ’ (r>70) A(r > ro) c2r ( )

This is the Schwarzschild vacuum solution exterior to a localized source. To solve for B(r < 1) we need to know p(r),
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23.1 There has to be a source

If we insert A’/A = —B'/B, i.e., A=1/B, into Gyy, then in the vacuum we obtain

T2

YV §3(F). (23.11)

Gy = —

[B” + gB'] = —%QVQB = —%QW (1 —
T

so not a vacuum solution at » = 0. Thus only an exterior solution at r > ry, and needs some mass in interior region to
support it.

23.2 Some numbers

For the sun
o 2M@GN
— 3

RS = 2.96 x 10° cm. (23.12)

Radius of the sun R = 6.96 x 10! cm. So the solar Schwarzschild radius is deep within the sun.

23.3 Black holes

But if the Schwarzschild radius Rg is greater or equal to the radius R of a system we have a black hole, so classically light
cannot escape. Except it can quantum-mechanically, viz. Hawking radiation. rg acts as horizon

The density of a black hole whose Schwarzschild radius is equal to its radius is given by
M M 3M &N
P=n/3)R2 ~ (4n/3)R%  4m \2MGy

(23.13)

For one solar mass get p = 10" gm.cm™. The density of the proton is of order M,/R} = 107*/107%* = 10" gm.cm™.
Thus a solar mass black hole has nuclear density right throughout the star. If we increase the black hole mass to 107 M,
density becomes 10 gm.cm ™3, not far from the density of water - quite counterintuitive.

Evidence for black holes: centers of active galactic nuclei, centers of spirals, gravitational waves seen at LIGO, event horizon
telescope.
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Light Bending




Light Bending




Tardis through the wormhole
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JHE

Figure 1: In December 1999 Time magazine designagl%s Albert Einstein the man of the twentieth century



24 Geodesics

For the general static, spherically symmetric metric of the form dr? = B(r)c?dt?> — A(r)dr? — r2d6* — r?sin® 0d¢? the four

equations of motion contained in d*z*/dr* 4+ T, (dz" /dr)(dz" /dT) = 0 take the form

d*t N cB' dt dr
“4rr "B drdr

Fr A (A (AN e ()P B ()
dr?2  2A \dr A \dr A dr 2A \dr

2 2
ﬁ + 2ﬁ£ — sinfcosf <@>

dr2 ' rdrdr dr
¢ 2dpdr N 2(:089 do do

dr? ' rdrdr sinf dr dr

(24.1)

with the prime denoting differentiation with respect to r. Equatorial plane solutions can be found in which 6 is fixed to

0 = 7/2, with the equations of motion for the three other coordinates reducing to
d*t  cB'dtdr
‘a2 " B drdr
Pr A (dr\? v [(do\® AB [dt\’
w+ﬂ(5) _Z(E> Y (d_) =90
d*¢  2d¢dr

& rdrdr

The first and last of these equations take the form

d do 5 d cdt
dT[og(dT)nLogr} 0, d7[0g<d7_>+og } 0

On choosing convenient integration constants they have first integrals of the form

dob a1
209 _ at
" J “dr B(r)
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Inserting these relations into the radial derivative equation gives

Pr A (dr\® O J? B’
) - = 24.
i 24 (dT) a5 Toap (24.5)
with integral
dr\> J? 1
A - Z = —_F 24.
() (dT) + r2  B(r) ’ (24.6)

where F is an integration constant, equal to the energy per unit mc?>. Thus mc*-Energy= kinetic energy, so 1 — E > 0.

Evaluating the line element gives ds*> = Edr?. Thus 1 > E > 0 for massive particles and £ = 0 for massless ones. Using
cdt/dr = 1/B(r) we can eliminate 7 and obtain

72 do A(ry [(dr\®  J? 1
——"=JB — ) 4+ == —=—F ds’* = EB? 2de?. 24.
c dt JB(r), 2B2(r) (dt) r2  B(r) ’ ° (r)e (24.7)

As a check we note that for a circular orbit the second equation in (24.2) gives

02 (dd\® A 2MGy 2 MGy
() g = R ) 24.8
r2 (dt) 2r (r) 2r3 r 72 (24.8)
From (24.4) and (24.6) we obtain for the orbit
A(r) (dr\® 1 1 E
- R ——— 24.9
ré (dgb) T J2B(r) J? (24.9)
so that
JBY2(r)AY2(r)
=4 [ d ) 24.10
¢ / " = Er?B(r) - J2B(r)]” 210
For bound orbits there are turning points where dr/d¢ = 0, i.e., where
r’(1 - EB) — J’B =0 (24.11)
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With B=1—-28/rand 1 — E >0, 8 > 0 we have

WE P 28
1-E 1-E 1-FE
(r—a1)(r —ag)(r —az) = r* —r*(ay + az + a3) + r(a;az + azaz + azar) — ajagaz = 0. (24.12)

TQ(T—ET—I—QEﬁ) —JQ(T—Qﬁ) =0, S+ 0,

Thus a1 + as + a3 < 0, a;as + asasz + aza; < 0, ajasaz < 0. From ajasag < 0 either one negative root or three. From
a;as + asaz + aza; < 0 three negative excluded. Thus one negative and two positive roots. But the radial coordinate is
positive. Thus only two relevant positive roots.

Thus two turning points, r, and r_, apogee and perigee. Hence the orbit is an ellipse. Introduce semilatus rectum
2/L = 1/ry +1/r_. Can solve exactly, find orbit precesses at rate of 6mMoGy/c*L radians per revolution. For Mercury,
L =5.53 x 10'%2 ¢cm, Get A¢ = 0.104 seconds per revolution. Then 43.03 seconds per century, just as required.

To understand what is happening consider the weak gravity Schwarzschild line element and point particle action

2 2
@%q%ﬂc—%S—mﬂO+ﬂvzéﬁﬂufé_i_%ﬂ,

r r c2r

I:mc/ds:mc2/dt[1—§—v—2—vz—5]. (24.13)

r  2c2  c2r

Now Newtonian v?/c? is equal to 8/r. Thus correction term is is of order v?3/c*r = v*/c* or equivalently of order 52/r?.
Hence precession of planetary orbits. (If just 5/r then no precession.)

Moreover, if v = ¢ get

d¥:3ﬁ2b—§—l—§r (24.14)

i.e., equal amounts of time dilation and Lorentz contraction causing gravitational bending of light. Full calculation of ¢(r)
for unbound orbit. Find for light just grazing the sun get A¢ = MG n/R-=1.75 seconds, just as observed.

Third classic test: gravitational redshift. Also confirmed.
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25 Cosmology

25.1 Hubble flow

Hubble identified a systematic behavior in galaxies: they were all redshifted with respect to us, i.e., moving away from us,
and had velocities of the form v = HD, where D is the distance from us and H is a constant.

Rationale: No point is special. Consider three equally spaced points A, B, C on a straight line. Let B have a velocity v
with respect to A. Let C have a velocity v with respect to B. Then C has a velocity 2v with respect to A, and is twice as
far from A as B is. Thus v = HD. Supernovae data as log plot:

(Qp2y) =
267 I R TTTTT (0, 1)
I 10505 (00
L 101, 0) (4,0)
24 - (15-0.5) (2,0)
- Supernova 7 » o
i Cosmology 1 g I
22; Project B <
x| :
S |
0 20 — n
) i Calan/Tololo b
é I (Hamuy et al, ]
5 18l A.J. 1996) ’
16 -
14, Lo ! BN
0.02 0.05 0.1 0.2 0.5 1.0
redshift Z
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If no point is special then universe is homogeneous and isotropic. So line element is as in (15.8):

dr?

2 23,2 9
ds® = c“dt — a“(t) e

+7r%d? + r? sin® 0dp* (25.1)

As space expands the axes on a grid expand with it, so coordinates of points do not change, viz. comoving.
However actual distance between points does change since grid itself expands with expansion radius a(t). Here
k is the spatial 3-curvature, k& > 0 closed surface, £ = 0 flat, k& < 0 open surface.

Redshift: Put ourselves at origin of coordinates. Consider a light signal that leaves a point distance r; from us
at time ¢ and reaches us at time #j. It travels on null geodesic

c/tﬂﬂ_/r1 dr (25.2)
goalt)  Joo (1—Fkr2)l? |

Consider a second signal that leaves r; at a slightly later time £; 4+ 0t and reaches us at £y + 0ty. It travels on
to+dtg dt 1 dr
c/ —:/ IR (25.3)
t1+0tq a(t) 0 (1 — kr )

- S (25.4)

Thus

Define redshift

— 1. (25.5)
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25.2 Newtonian cosmology

Consider a static, spherically symmetric universe of density p, total mass M = (47 /3)pr3, with a particle of mass m, velocity
v at a distance r. Its energy is
1 5, mMGy 1y 47rmGypr3

1o 1 2 dmmGypr 25.
U 5 MY . 5 MY & (25.6)

Now set v = Hr. This gives

U=_—mr 2N

2 3 2

m drmGnpr?  m 8 ArmG 12
— r <H2 ) =———(p.—p). (25.7)

This allows us to define a critical density p. = 3H?/87Gy of order 107 gm.cm ™. Thus if p > p. U iis negative and particle
is bound. If. p < p. particle escapes, i.e., unbound.

If p = p. then
d MG\ 2

v=" = Gy (QMGy) 2t = 232 2MGy = 10® = B = 22H MGyt (25.8)

dt r 3 4

Thus we get
2

p— 2 25.9
i (25.9)

With Hy = 72 kmsec ! Mpc™ = 2.4 x 1071® sec, 1/Hy = 4x10'7sec, current age of universe =2.67 x 1017 sec. Approximately
10 billion years.

o4



26 (eneral relativistic cosmology

ds* = c2dt* — a*(t) 1 grzﬂ +1r2d0? + r?sin® 0d¢? | = Pdt* — a*(t)gidx' . (26.1)
Nonzero components of the affine connections, the Ricci tensor and Einstein tensor are (c=1)
Y = aags;, b = 2557 L= %(g_l)w [0jGre + OkGje — OeGijr)
ROO:%, Ry — —(aii + 232 + 2k)Gyy. R — 2094 +af2+k),
Goo = —w, Gij = Gij [2ai + a° + k] . (26.2)

a
Because of the homogeneous and isotropic geometry the energy-momentum tenser must be a perfect fluid with p and p only
being functions of ¢, and with v* = (1,0,0,0), u, = (—1,0,0,0). Thus with 7, = (p + p)u,u, + pg,, the Einstein equations
take the form

3(a® + k
—% = —81Gnp, 2ai + a* + k = —87Gya’p. (26.3)
so that, with H = a/a (cf. v/r = H), we obtain
k 4
a*+ k= SW?)GNan, H? + 5= SW?)GNp, a=— W?)GNa(p + 3p). (26.4)

The first of these equations is known as the Friedmann equation, the second is analogous to Newtonian cosmology with
same p. = 3H?/87Gy, and the third says that even with @ > 0, nonetheless @ is negative (deceleration) if p + 3p > 0, i.e.,
slowing down expansion.

Covariant conservation of TH” gives

o o 1 1] . a
O, +Th T+ 1), T =0,  QT" +TyT” +T),TY =0,  p+ 3—(p+p)=0. (26.5)
Three key solutions, relativistic, nonrelativistic and cosmological constant:
A B
(1): p= g, p=7 (2): p=0, p= pet 3): p=—p, p = A = constant. (26.6)

Known as radiation era, matter era, cosmological constant era (viz. inflation).
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26.1 Cosmological implications

Some typical solutions with £ = 0.

p= g, a2 = 8”?53 . alt) = (67GN BV,
p=A\, a’ = w, a(t) = e’ H = (SWC;NA) 1/2. (26.7)
Some typical radiation era solutions for any k
I N T 263

If k=0 or k <0 then a(t) expands forever. If k > 0 then a(t) reaches a maximum at t = (87GyA/3)?/k,
after which a(t) contracts. H = a/a blows up at t = 0, the big bang.. For black body p = A/a* = agT*.
Thus a(t) = p/T where p = (A/ag)'/*, so early universe is hot, and universe cools as it expands. Thus
approximately radiation until last scattering of photons and baryons (at around 3000° when temperature
becomes too low to ionize atoms) and matter era since then until today (around 3°). After last scattering
radiation propagates as a free black body. If switch from radiation era to matter era iabruptly at ¢; then

9Bt)* = 16 A.

Successes: Hubble flow, cosmic microwave background (CMB), primordial nucleosynthesis,
baryon acoustic fluctuations in the CMB.
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26.2 Horizon problem

In the k = 0 case for the line element ds? = c2dt?> — a?(t)[dr? + r?df? + r?sin® Od¢?] the
proper radial distance (the horizon) is dg = a(t) [ dr. The last scattering sky is at time ¢,
since the big bang and at a distance r; from us. A radial null geodesic that reaches us at
time £y and 7 = 0 from the last scattering sky is of the form

" " dt 5 /3 ,1/3 3 1/3
dr= | - = t =t ~ LR (269
/0 r /tL CL(t>7 rp (67TGNB)1/2[ 0 L ] <67TGNB)1/2 0 ( )

A yardstick on the sky at time ¢z that fills the sky subtends an angle 7, and at our current
time has an approximate proper angular diameter d4 = a(ty)7ry.
A null signal that sets out at ¢ = 0 at a distance ry from us travels to last scattering according

to
"o ‘L qt 3 1/2 1/2
dr — . - t 20.10
[ =] mm (s71) 4" (26.10)

and has an associated proper distance dy = a(tL)ti/ *(3/87G N A)Y2. Thus we get

- = t t = — | — =— | — = a few d
d (87TG NA) L 37 0 3r \ o 3r \T} A Tow HCETees
(26.11)

So last scattering sky should not have thermalized, and vet it has to one part in 10°.
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26.3 Flatness problem

Measure baryon density pp today to be about 0.01p.. If £ = 0 should be equal to p.. With evolution equation
a’ + k = (87G/3)a’p, at big bang singularity the infinity in a? balances singularity in (87G/3)a?p no matter
what £ is. So structure of initial universe is same as that of a k& = 0 universe. The matter density now redshifts
for 10 billion years and yet is still close to a universe with k& = 0 today. Chance of getting such a universe

060

today evaluates to one part in 10°”. Thus have to fine tune initial conditions to have universe evolve into what

we see today. Now if £ = 0 would not need to fine tune initial conditions since then p = p. in every epoch.
But current p = 0.01p.. This is the flatness problem.

26.4 Cosmological constant problem

As universe cools it goes through electroweak phase transition at around 10* °K. This releases a free energy

of order T* = 10%. But current temperature is of order a few degrees. So energy in vacuum energy (viz.

060

cosmological constant) is of 10% times that of energy in ordinary matter. A total disaster unless quenched.

26.5 Accelerating universe problem

High redshift supernova data show gravity has a repulsive component.

26.6 Quantum gravity problem

Quantum graviton loops are infinite. A total disaster unless quenched.
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26.7 General nature of the problems
If a(t) = t" then a = nt" ', 4 =n(n — 1)t" 2 [dt/a(t) =t"""/(1 —n), [dt/a(t) =logt
ifn=1.

I[f n < 1then ablowsupatt=0,ad <0, [dt/a(t) is finite at ¢ = 0. Initial singularity and
flatness problem, deceleration, and horizon problem

If n > 1 then a does not blow up at t = 0, @ > 0, [ dt/a(t) blows up at ¢ = 0, No initial
singularity, no flatness problem, acceleration, no horizon problem.
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26.8 Inflation and the dark matter problem

Can solve horizon problem if n > 1. Brout, Englert and Gunzig (1978), Kazanas (1979),
Starobinsky (1979), Guth (1980) showed that if a(t) = e” then no horizon problem.

Guth: a(t) = e also solves fine tuning flatness problem. Early universe inflates very
rapidly, a(t) becomes so big that universe is effectively flat. (Technically curvature does not
gravitate very much.). Then e’ switches off and we have a(t) = t'/2 and then a(t) = t%/3.
But if £ = 0 then p = p.. But luminous baryon density is only 1 per cent of critical. So what
is the remaining 99 per cent — dark matter, So search for it began, and after forty years none
found as of yet. As well as cosmological dark matter, also need dark matter for galaxies and
clusters of galaxies.

To check if the 99 per cent is there, study accelerating universe high redshift supernova. Ruled
out, find need for only 30 percent dark matter, as it decelerates. Need something additional,
to give acceleration: 70 per cent dark energy (viz. the cosmological constant cannot be
ignored). So inflation does not solve fine tuning problem. Only fixes the sum of dark
matter energy density and dark energy, but not their redshift-dependent ratio. Nonetheless,
inflationary fluctuations work very well for fluctuations in the CMB.
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Figure 2: The variation in temperature is of order 10~°. Small departure from uniform expanding Hubble flow.
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Figure 3: 30 percent dark matter 70 percent dark energy fit to angular momentum decomposition of the CMB fluctuations
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27 Quantum Gravity
27.1 Does gravity actually know about quantum mechanics? — Experimental considerations

Before discussing how one might quantize gravity we need to discuss whether we need to.
Macroscopically, there are two established sources of gravity that are intrinsically quantum-
mechanical: (i) the Pauli degeneracy pressure of white dwarf stars with Chandrasekhar mass
Mecy ~ (hc/G)?’/Q/mg, and (ii) the energy density p = k3T /15¢°h* and pressure p = p/3
of the cosmic microwave background black-body radiation in cosmology:.
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Figure 4: Colella-Overhauser-Werner experiment

Microscopically, the Colella-Overhauser-Werner experiment (1975) shows that the quantum-mechanical
phase of the wave function of a neutron of mass m and velocity v is modified as it traverses the gravita-
tional field g of the earth. In the vertical ABC D interferometer C'D lies vertically above AB. The incoming
neutron beam splits at A with one component traveling horizontally to B and the other component traveling
vertically to C. The components at B and C' are then reflected so that they interfere at D. With C'D being
at higher gravitational potential than AB, interference fringes are seen at D. With a change in the action of
the neutron being of the form AI = —mgH?/v (i.e., change compared to the ABCD interferometer lying in
the horizontal), the phase shift is given by A¢cow = AI/h = —mgH?/vh (see e.g. Mannheim 1998), where
AB = BD = DC = CA = H, yielding an observable fringe shift at D even though H is only of the order of
centimeters and m is the minuscule mass of a neutron — it is just that Al is not small on the scale of h.

Thus gravity can measure the actual value of the stationary action and thus can measure the mass m, even
though it drops out of the classical geodesic. The quantum-mechanical version of the equivalence principle is
thus that the inertial and gravitational de Broglie wavelengths A/m;v and h/mgv are equal (i.e., interference
in the horizontal and vertical). On measuring a nonvanishing fringe shift, Colella, Overhauser and Werner
provided the first laboratory evidence of its kind that shows that gravity knows about quantum mechanics.
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27.2 Theoretical considerations and concerns

In equations such as the Einstein equations:

1 1

we note that if the Einstein tensor is to be equal to the matter field energy-momentum tensor, then either both
sides are classical c-numbers or both sides are quantum-mechanical g-numbers. Otherwise, if the gravity side
were to be classical while the matter side were to be quantum mechanical, then the quantum 73;” would have
to be equal to a c-number in every single field configuration imaginable, which is impossible. Moreover, from
gravitational experiments described above we know that the source of gravity is quantum-mechanical, and not
only that, we know that gravity knows it. Hence gravity must be quantized.

However, since these gravitational experiments are not sensitive to quantum gravity effects themselves (graviton
loops), for phenomenological purposes it is conventional to use a hybrid in which we keep gravity classical but
take c-number matrix elements of its source, to give

1 1
~ [ R™ — Zg" R“ — (THy 27.2
87TG( 29 a) < M> ( / )

But (Ty,") involves products of fields at the same point, so it is not finite. Thus we additionally subtract off the
infinite zero-point part and take the source to be the normal-ordered (T3 )rin = (T3 ) — (T%{ )prv instead:

1 1
——— | R — g™ R*, | = (T{ ) rIn. 27.3

It is in this subtracted form that the standard applications of gravity are made. Thus in YX(afa + 1/2)Aw
we keep the Ya'ahw term but ignore the Y(1/2)hw zero-point energy density term in (TP), precisely as is
done in determining the Chandrasekhar mass or the black body contribution to cosmology. Also we ignore the
zero-point pressure in the spatial (7 ﬁ ).
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As of today there is no known justification for using (27.3), with this subtracted hybrid not having been
derived from a fundamental theory or having been shown to be able to survive quantum gravitational correc-
tions. Moreover, it is this very hybrid that is used in cosmology, and the cosmological constant problem is then
the phenomenological need to make <T1\9[O>FIN be small. Absent a first-principles derivation of

g (B = 50 B) = () = (T howe = (T e 274
this is not the right starting point for attacking the cosmological constant problem.

There is no apparent reason why the zero point energy density of the matter sector should not gravitate.
Moreover, while one only needs to consider energy differences in flat space physics, in gravity one has to consider
energy itself, with the hallmark of Einstein gravity being that gravity couples to everything. Hence for gravity
one cannot ignore zero-point contributions. And if we throw them away then gravity does not know where the
zero of energy is — and that is what creates the cosmological constant problem.

Moreover, even if one does start with the subtracted hybrid, then the order G contribution to gravity is given
by the flat spacetime (Q|T3]|Q2)pin, with Lorentz invariance allowing a finite flat spacetime (Q|T3,|Q2)pin to be
of the generic form —Ag,,,. Thus even if one ignores the matter sector zero-point energy contributions one still
has a vacuum energy problem; with the standard strong, electromagnetic, and weak interactions typically then
generating a huge such A. We thus recognize two types of vacuum problem, zero-point and —Ag,,, problems.
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Moreover, if we take gravity to be quantum-mechanical (as we must), it too will have divergent zero-
point contributions. However, in order to be able to discuss gravitational zero-point contributions, we need a
consistent quantum gravity, This leads us (Mannheim 2017) to conformal gravity, viz. gravity based on the
square of the Weyl tensor, viz.

Iy = —a, / 04 (— ) 2 Clp o O (27.5)
where
1 1
C)\uwa — R)\;um + 6R « [g)\l/g,ulﬁ - g)\/ig,w/] — 5 [g)\l/R;m — g)\H;Rw/ — g,[U/R)\KJ =+ g;mR)\y] ) (276)

and o, is a dimensionless gravitational coupling constant.

As has been shown in Mannheim 2017, rather than the divergent zero-point energy density in the gravity
sector being yet another vacuum energy problem, instead it is its interplay with the matter field zero-point
contribution that actually leads to a solution to the cosmological constant problem. Thus the cosmological
constant problem arises entirely due to ignoring how (T3, )rix got to be finite in the first place, and then using
RN —(1/2)g" R, = —8nG(T}{ )i as the starting point, with gravity actually being quantized by the source
that it is coupled to, rather than by being quantized on its own.

As discussed in Mannheim 2017 theory conformal gravity recovers Schwarzschild on solar system distances,
generates linear and quadratic potentials in galaxies that remove the need for galactic dark matter, solves
the cosmological horizon, flatness, accelerating universe and cosmological constant problems without any fine
tuning or any need for any cosmological dark matter, and provides a consistent renormalizable, unitary theory
of quantum gravity in four spacetime dimensions, the only dimensions for which we have any evidence.

67



SUMMARY

All the big problems have a common origin: The extrapolation of standard Newton-Einstein Gravity beyond
its solar system origins.

1. Continue to galaxies get dark matter problem

2. Continue to cosmology get the cosmological constant /dark energy problem

3. Continue to quantum field theory far off the mass shell get the renormalization and vacuum zero-
point energy problems

The Standard Solution: Supersymmetry, Extra Dimensions, String Theory, The Multiverse, The Anthropic
Principle. No evidence for any of them. But until recently no evidence against any of them either.

Recent evidence against supersymmetry. Not found at the LHC. Should have been found in same energy region
as the recently found Higgs boson.

Solution: Change the extrapolation: get conformal gravity. All these problems are solved, with no need for
any of the dark fixes. Quantum conformal gravity is ghost free and unitary (Bender and Mannheim, PRI 100,
110402 (2008); PRD 78, 025022 (2008)). Through scale invariance with anomalous dimensions Higgs boson is
a naturally dynamical fermion-antifermion bound state (Mannheim, Prog. Part. Nucl. Phys. 94, 125 (2017)),
so no hierarchy problem.

MORAL OF THE STORY

At the beginning of the 20th century studies of black-body radiation on microscopic scales
led to a paradigm shift in physics. Thus it could that at the beginning of the 21st century
studies of phenomena such as black-body radiation, this time on macroscopic cosmological
scales, might be presaging a paradigm shift all over again.
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