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We discuss some non-conventional options for quantum theory. We show that not only do Hamiltonians not

need to be Hermitian to have real eigenvalues, they do not even need to be diagonalizable or possess a complete

spectrum of energy eigenstates. We discuss how to formulate quantum mechanics in such cases. We show that

it is not always possible to write the momentum operator as the familiar derivative operator −id/dx where x

is real, and discuss what one should then do. Following work by Bender and Mannheim [Phys. Rev. Lett. 100,

110402 (2008)] we show how these issues are relevant to the construction of a consistent theory of quantum

gravity in four spacetime dimensions. In this theory there is no observable graviton.
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1 ANTILINEARITY VERSUS HERMITICITY

(1). Hermiticity implies the reality of eigenvalues

|H − λI| = 0, |H† − λ∗I| = 0, |H − λ∗I| = 0, λ = λ∗. (1)

(2). Hermiticity implies conservation of probability

i∂t|n〉 = H|n〉, −i∂t〈n| = 〈n|H†, i∂t〈n|n〉 = 〈n|(H −H†)|n〉 = 0 (2)

(3). Is the converse true? Does reality of eigenvalues and conservation of probability imply Hermiticity.

(4). Answer no. Bender and Boettcher (1998): H = p2 + ix3 has all eigenvalues real.

(5). So if Hermiticity is only sufficient, what is the necessary condition: H has to have an antilinear symmetry

A that effects AiA−1 = −i. For non-relativistic physics A = PT (Bender), for relativistic physics A = CPT

(Mannheim). P is parity, T is time reversal, C is charge conjugation.

(6). So what is the necessary and sufficient condition? Hamiltonian must possess an antilinear symmetry, and

the eigenstates of the Hamiltonian must be eigenstates of the antilinear operator.

For finite-dimensional systems that obey [H,PT ] = 0 with a diagonalizable H , one can always construct a C
operator that obeys C2 = I , [H, C] = 0. Necessary and sufficient condition for real eigenvalues (Bender and

Mannheim 2010) is that [C, PT ] = 0.
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2 HOW ANTILINEAR SYMMETRY WORKS

Consider the eigenvector equation

i
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 = E|ψ(t)〉. (3)

Replace the parameter t by −t and then multiply by some general antilinear operator A:

i
∂

∂t
A|ψ(−t)〉 = AHA−1A|ψ(−t)〉 = E∗A|ψ(−t)〉. (4)

If H has an antilinear symmetry so that AHA−1 = H , then

HA|ψ(−t)〉 = E∗A|ψ(−t)〉. (5)

(1) (Wigner in study of time reversal): Energies can be real and have eigenfunctions that obey A|ψ(−t)〉 =

|ψ(t)〉,

(2) or energies can appear in complex conjugate pairs that have conjugate eigenfunctions (|ψ(t)〉 ∼ exp(−iEt)
and A|ψ(−t)〉 ∼ exp(−iE∗t)).

As to the converse, suppose we are given that the energy eigenvalues are real or appear in complex conjugate

pairs. In such a case not only would E be an eigenvalue but E∗ would be too. Hence, we can set HA|ψ(−t)〉 =

E∗A|ψ(−t)〉 in (4), and obtain

(AHA−1 −H)A|ψ(−t)〉 = 0. (6)

Then if the eigenstates of H are complete, (6) must hold for every eigenstate, to yield AHA−1 = H as an

operator identity, with H thus having an antilinear symmetry.
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3 A SIMPLE EXAMPLE

N =

C + A iB

iB C − A

 , (7)

where A, B and C are all real. The matrix N is not Hermitian but does have a PT symmetry if we set P = σ3

and T = K where K effects complex conjugation, [H,KP ] = 0, PKHKP = H . The eigenvalues of N are

given by

Λ± = C ± (A2 −B2)1/2, (8)

and they are real if A2 ≥ B2 and in a complex conjugate pair if A2 < B2, just as required of a non-Hermitian

but PT -symmetric matrix.

In addition, if A = B the matrix N only has one eigenvector despite having two solutions to |M − λI| = 0

(both with λ = C), viz.

C + A iA

iA C − A

  a
b

 =

Ca + Aa + iAb

iAa + Ca− Ab

 = C

 a
b

 (9)

only has one eigenvector, viz

b = ia,

 a
b

 =

 a
ia

 (10)

and thus cannot be diagonalized by a similarity transformation. It is thus a non-diagonalizable, Jordan-block
matrix. This particular Jordan-block situation is a case where the Hamiltonian is manifestly non-diagonalizable
and thus manifestly non-Hermitian and yet all eigenvalues are real.
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Three options for antilinear symmetry:

(1) Energies real and eigenvectors complete.

(2) Energies in complex pairs and eigenvectors complete.

(3) Energies real but eigenvectors incomplete.

Antilinearity richer than Hermiticity.

For decays: there is a transition between the two members of the complex conjugate pair, one decaying in time

(e−iERt−EI t), the other growing (e−iERt+EI t). As population of decaying one decreases population of growing

one increases. If Hamiltonian is Hermitian there should be no decays, just stationary states with real energies.
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N =

C + A iB

iB C − A

 . (11)

Introduce

S =
1

2(A2 −B2)1/4

 (A + B)1/2 + (A−B)1/2 i[(A + B)1/2 − (A−B)1/2]

−i[(A + B)1/2 − (A−B)1/2] (A + B)1/2 + (A−B)1/2

 , (12)

S−1 =
1

2(A2 −B2)1/4

 (A + B)1/2 + (A−B)1/2 −i[(A + B)1/2 − (A−B)1/2]

i[(A + B)1/2 − (A−B)1/2] (A + B)1/2 + (A−B)1/2

 , (13)

V =
1

(A2 −B2)1/2

 A iB

−iB A

 , V −1 =
1

(A2 −B2)1/2

 A −iB
iB A

 , (14)

and they effect

SNS−1 = N ′ =

C + (A2 −B2)1/2 0

0 C − (A2 −B2)1/2

 ,
V NV −1 =

C + A −iB
−iB C − A

 = N † (15)

Thus can diagonalize N as long as A 6= B, and can construct a V that effects V NV −1 = N †, just as is

characteristic of a matrix with an antilinear symmetry, and with A = B being Jordan block. If V NV −1 = N †

then N and N † have common set of eigenvalues, so real or in complex pairs.

6



So now let us look at the eigenvectors.
When A2 > B2 the left- and right-eigenvectors that obey 〈L±| = 〈R±|V are given by

R+ =
1

2(A2 −B2)1/4

 (A + B)1/2 + (A−B)1/2

i[(A + B)1/2 − (A−B)1/2]

 ,

R− =
1

2(A2 −B2)1/4

−i[(A + B)1/2 − (A−B)1/2]
(A + B)1/2 + (A−B)1/2

 ,

L+ =
1

2(A2 −B2)1/4
( (A + B)1/2 + (A−B)1/2, i[(A + B)1/2 − (A−B)1/2] ) ,

L− =
1

2(A2 −B2)1/4
(−i[(A + B)1/2 − (A−B)1/2], (A + B)1/2 + (A−B)1/2 ) ,(16)

and these eigenvectors are normalized according to the positive definite 〈Ln|Rm〉 = 〈Rn|V |Rm〉 =
δm,n, i.e. according to L±R± = 1, L∓R± = 0. In addition N and the identity I can be
reconstructed as

N = |R+〉Λ+〈L+| + |R−〉Λ−〈L−|, I = |R+〉〈L+| + |R−〉〈L−|, (17)

to thus be diagonalized in the left-right basis.

While N is not Hermitian, when A2 > B2, N can be brought to a Hermitian form. It
is thus Hermitian in disguise, i.e. it does not look Hermitian but it can be brought to a
Hermitian form by a similarity transformation.
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To appreciate the point, consider H† = H and transform with H ′ = SHS−1 where
SS† 6= I . We obtain

H ′† = S−1†H†S† = S−1†HS† = S−1†S−1H ′SS† = [SS†]−1H ′SS† 6= H ′. (18)

Thus unless S is unitary H ′† is not equal to H ′, with the Hij = H∗ji Hermiticity condition
being a condition that is not preserved under a general similarity transformation. Thus if one
starts with some general H ′ that does not obey H ′ = H ′†, it might be similarity equivalent
to a Hermitian H but one does not know a priori. It only will be similarity equivalent to a
Hermitian H if the eigenvalues of H ′ are all real and the eigenspectrum is complete. And
the necessary condition for that to be the case is that H ′ possess an antilinear symmetry.

In general one should define Hermitian in a basis-independent way, taking
it to mean that eigenvalues are real and that eigenbasis is complete. Then
there will always exist a basis in which Hij = H∗ji.
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When A2 −B2 is negative the eigenvalues are in a complex pair.

When A2 = B2 (viz. Λ± = C),

N =
C + A iB

iB C − A

→ N =
C + A iA

iA C − A

 , Λ± = C ± (A2 −B2)1/2 → C,(19)

we note that even though all of L± , R± become singular at A2 = B2, N still has left- and

right-eigenvectors L and R that are given up to an arbitrary normalization by

L = ( 1 i ) , R =
 1
i

 , LN = CN, NR = CR, (20)

and no matter what that normalization might be, they obey the zero norm condition
characteristic of Jordan-block matrices:

LR = ( 1 i )
 1
i

 = 0. (21)

Even though the eigenspectrum of N is incomplete, the vector space on which it acts is still
complete. One can take the extra states to be

L′ = ( 1 −i ) , R′ =
 1
−i

 , (22)

with L′R′ = 0, so that R and R′ span the space on which N acts to the right, while L and
L′ span the space on which N acts to the left.
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4 FURTHER INSIGHT INTO NON-DIAGONALIZABLE HAMILTONIANS

Consider the two oscillator system obeying the fourth-order derivative

(∂2
t + ω2

1)(∂2
2 + ω2

2)ψ(t) = 0 (23)

There are two solutions

ψ1(t) = eiω1t, ψ2(t) = eiω2t, (24)

together with their conjugates.

Now let ω1 = ω2 = ω. The system now obeys

(∂2
t + ω2)2ψ(t) = 0 (25)

and the two solutions collapse onto

1

2
[ψ1(t) + ψ2(t)]→ ψ(t) = eiωt. (26)

So where did the other solution go? Set ω1 = ω + ε, ω2 = ω − ε
1

2ε
[ψ1(t)− ψ2(t)] =

1

2ε
eiωt

[
eiεt − e−iεt

]
→ 1

2ε
eiωt [1 + iεt− (1− iεt)] = iteiωt. (27)

Thus the second solution is NOT stationary (not an eigenstate of i∂t). Hence it is NOT an eigenstate of

the Hamiltonian. This is why the Hamiltonian is NOT diagonalizable, it is missing an eigenstate. As for

the eigenstate it does have, its norm is zero. Thus in the limit both ψ1(t) = eiω1t and ψ2(t) = eiω2t become

unobservable.

The conformal gravity theory is a fourth-order derivative theory of gravity, and even though it has classical
gravitational waves its quantized version has no observable graviton.
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5 PROBABILITY CONSERVATION

Consider a right eigenstate of H in which H acts to the right as i∂t|R(t)〉 = H|R(t)〉 with
solution |R(t)〉 = exp(−iHt)|R(0)〉. The Dirac norm

〈R(t)|R(t)〉 = 〈R(0)| exp(iH†t) exp(−iHt)|R(0)〉 (28)

is not time independent ifH is not Hermitian, and would not describe unitary time evolution.
However, this only means that the Dirac norm is not unitary, not that no norm is unitary.

Since i∂t|R(t)〉 = H|R(t)〉 only involves ket vectors, there is some freedom in choosing
bra vectors. So let us introduce a more general scalar product 〈R(t)|V |R(t)〉 with some
time-independent linear operator V . We find

i
∂

∂t
〈Rj(t)|V |Ri(t)〉 = 〈Rj(t)|(V H −H†V )|Ri(t)〉. (29)

Thus if we set

V H −H†V = 0, (30)

then scalar products will be time independent and probability is conserved.
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For the converse we note if we are given that all V scalar products are time independent,
then if the set of all |Ri(t)〉 is complete we would obtain V H − H†V = 0 as an operator
identity. The condition V H −H†V = 0 is thus both necessary and sufficient for the
time independence of the V scalar products 〈R(t)|V |R(t)〉.

Now if V H − H†V = 0, we can set V H|ψ〉 = EV |ψ〉 = H†V |ψ〉. Consequently H and
H† have the same set of eigenvalues, i.e. for every E there is an E∗. (When V is invertible,
this also follows from H† = V HV −1, an isospectral similarity transformation.) Energy
eigenvalues are thus either real or in complex conjugate pairs.

Consequently, H must have an antilinear symmetry.

Consider

−i ∂
∂t
〈R|V = 〈R|H†V = 〈R|V H. (31)

Can identify 〈L| = 〈R|V as left-eigenvector, and thus inner product is 〈L|R〉, and operator
matrix elements are 〈L|Ô|R〉.
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6 THE TAKEAWAY

Antilinear symmetry of a Hamiltonian implies that energies are real or in complex pairs.

Energies real or in complex pairs implies that Hamiltonian has an antilinear symmetry.

REALITY OF EIGENVALUES IMPLIES ANTILINEARITY NOT HER-
MITICITY

Probability conservation implies that Hamiltonian has an antilinear symmetry.

Antilinear symmetry of a Hamiltonian implies that probability is conserved.

CONSERVATION OF PROBABILITY IMPLIES ANTILINEARITY NOT
HERMITICITY

Since a Hamiltonian cannot have more eigenvectors than right and left ones, 〈L|R〉 =
〈R|V |R〉 is most general inner product one can use.

One never needs to impose Hermiticity. One only needs to impose antilinear symmetry.

But is any particular antilinear symmetry to be preferred. Study implications of Lorentz
invariance.
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So consider as an example

IS =
∫
d4x

1

2
[∂µφ∂

µφ−m2φ2] (32)

with Hamiltonian

H =
∫
d3x

1

2
[φ̇2 + ~∇φ · ~∇φ + m2φ2]. (33)

Solutions to the wave equation obey

φ(~x, t) =
∑

[a(~k) exp(−iωkt + i~k · ~x) + a†(~k) exp(+iωkt− i~k · ~x)], ω2
k = ~k2 + m2 (34)

and the Hamiltonian is given by

H =
∑1

2
[~k2 + m2]1/2[a†(~k)a(~k) + a(~k)a†(~k)]. (35)

If m2 > 0 all energies are real, and both H and φ(~x, t) are Hermitian. However, if m2 =
−n2 < 0, now

ω2
k = ~k2 − n2, (36)

the k < n energies come in complex conjugate pairs and neither H nor φ(~x, t) is Hermitian.
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Instead H is CPT symmetric, and φ(~x, t) is CPT even. Despite this, the standard
derivation of the CPT theorem would have identified IS =

∫
d4x[∂µφ∂

µφ+n2φ2]/2 as being
a Hermitian theory. But it is not, and one cannot tell by inspection. One needs
to solve the theory and get the solutions first. Nonetheless, in both the m2 > 0 and m2 < 0
cases φ(~x, t) is a CPT even field and H is CPT invariant (since m2 is real), and is something
that one can tell by inspection. Thus CPT symmetry is input, and H and φ(~x, t) will only
be Hermitian for certain values of parameters (reminiscent of our two-dimensional example
where E± = C ± (A2 −B2)1/2).

Another example: the Pais-Uhlenbeck (PU) oscillator with Hamiltonian

HPU =
p2
x

2γ
+ pzx +

γ

2

(
ω2

1 + ω2
2

)
x2 − γ

2
ω2

1ω
2
2z

2. (37)

Energies E(n1, n2) = (n1+1/2)ω1+(n2+1/2)ω2 are real if ω1 and ω2 are real. However, now
set ω1 = α + iβ, ω2 = α− iβ with α and β real. Energies now come in complex conjugate
pairs and yet this necessarily non-Hermitian Hamiltonian is given by the seemingly Hermitian

HPU =
p2
x

2γ
+ pzx + γ(α2 − β2)x2 − γ

2
(α2 + β2)z2. (38)

Hermiticity never needs to be postulated, with it being output in those
cases in which it is found to occur.

Probability conservation and complex Lorentz invariance entail CPT in-
variance not Hermiticity.
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7 RELATION OF PT AND CPT TO COMPLEX LORENTZ TRANSFORMATIONS

On coordinates PT implements xµ → −xµ, and thus so does CPT since the coordinates are charge conjugation

even. With a boost in the x1-direction implementing x′1 = x1 cosh ξ + t sinh ξ, t′ = t cosh ξ + x1 sinh ξ, with

complex ξ = iπ we obtain

Λ0
1(iπ) : x1 → −x1, t→ −t,

Λ0
2(iπ) : x2 → −x2, t→ −t,

Λ0
3(iπ) : x3 → −x3, t→ −t,

πτ = Λ0
3(iπ)Λ0

2(iπ)Λ0
1(iπ) : xµ → −xµ. (39)

Complex πτ implements the linear part of a PT and CPT transformation on coordinates.

With Λ0
i(iπ) implementing e−iπγ

0γi/2 = −iγ0γi for Dirac gamma matrices, on introducing

π̂τ̂ = Λ̂0
3(iπ)Λ̂0

2(iπ)Λ̂0
1(iπ), (40)

we obtain

π̂τ̂ψ1(x)τ̂−1π̂−1 = γ5ψ1(−x), π̂τ̂ψ2(x)τ̂−1π̂−1 = γ5ψ2(−x). (41)

Thus up to an overall complex phase, quite remarkably we recognize this transformation as acting as none

other than the linear part of a CPT transformation since ĈP̂ T̂ [ψ1(x) + iψ2(x)]T̂−1P̂−1Ĉ−1 = iγ5[ψ1(−x)−
iψ2(−x)].

Thus CPT is naturally associated with the complex Lorentz group. Complex Lorentz

invariance plus probability conservation implies CPT invariance without requiring Her-

miticity (Mannheim2018).
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8 What do we Mean by Hermitian, and When is it Different from Self-adjoint.

In a given basis H = H† means Hij = H∗ji. Apply a similarity transformation. H ′ = SHS−1. Get

(H ′)† = (S−1)†H†S† = (S−1)†HS†. (42)

Only equals H ′ if

(S−1)†HS† = SHS−1, (43)

i.e. if

S−1(S−1)†HS†S = H. (44)

Not obeyed in general if S is not unitary, i.e. if S† 6= S−1. Arbitrary S thus transforms to a non-orthonormal

skew basis, with Hij = H∗ji being a nonlinear relation that only holds in certain bases. Thus what we mean by

Hermitian is that we can find a basis in which Hij = H∗ji. Basis independent definition: Hermitian

means all eigenvalues real and eigenfunctions complete.

In contrast, a commutation relation is preserved under a similarity transformation (even with antilinear

operators), with [A′, B′] = [A,B]. Antilinear symmetry is thus basis independent.

For a second-order differential operator D in the form D = −p(x)d2/dx2 − p′(x)d/dx + q(x) that acts on

wave functions φ(x), ψ(x), one can show (Green’s theorem) that

∫ b
a
dx[φ∗Dψ − (ψ∗Dφ)∗] =

∫ b
a
dx[φ∗Dψ − [Dφ]∗ψ] =

[
pψφ∗′ − pφψ∗′

]b
a

(45)

Self-adjointness requires the vanishing of the surface term. Then get standard definition of Hermitian.
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To define a commutator [x̂, p̂] = ih̄, we need to specify a basis on which it acts. Can set p̂ = −ih̄d/dx only

when acting on a good, i.e. normalizable, test function according tox̂,−ih̄ d
dx

ψ(x) = ih̄ψ(x). (46)

Thus for a harmonic oscillator Ĥ = p̂2 + x̂2 for instance we have the following two solutions:− d2

dx2
+ x2

 e−x2/2 = e−x
2/2,

− d2

dx2
+ x2

 e+x2/2 = −e+x2/2 (47)

Of them only the e−x
2/2 wave function is normalizable (cf. vanishing of the surface term), with

∫
dxψ∗(x)ψ(x)

being finite. And when acting on it we can indeed represent p̂ as p̂ = −ih̄d/dx. Here x is real and we are

working in the coordinate basis in which x̂ is Hermitian, has real eigenvalues x, and is diagonal in this basis.
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− d2

dx2
+ x2

 e−x2/2 = e−x
2/2,

− d2

dx2
+ x2

 e+x2/2 = −e+x2/2 (48)

But what of the e+x2/2 solution. It is not normalizable and we cannot represent p̂ = −ih̄d/dx when acting

on it since cannot throw away the surface term in an integration by parts. However suppose we make x

pure imaginary. Then e+x2/2 is normalizable on the imaginary axis. Thus we can take both x̂ and p̂ to be

anti-Hermitian and represent [x̂, p̂] = ih̄ as [−ix̂, ip̂] = ih̄. This is equivalent to the similarity transformation

Ŝ = exp(−πp̂x̂/2) that effects

Ŝp̂Ŝ−1 = ip̂ = q̂, Ŝx̂Ŝ−1 = −ix̂ = ŷ, (49)

while preserving both the commutation relation [x̂, p̂] = [ŷ, q̂] = i and the eigenvalues of a Hamiltonian Ĥ(x̂, p̂)

that is built out of x̂ and p̂. We thus haveŷ, h̄ d
dy

ψ(y) = ih̄ψ(y), (50)

and now e+x2/2 = e−y
2/2 is a good test function. Thus e−x

2/2 is a good test function when x is real, while

e+x2/2 is a good test function when x is pure imaginary. When x is pure imaginary we can set

[p̂2 + x̂2]e+x2/2 = −[q̂2 + ŷ2]e−y
2/2 =

 d2

dy2
− y2

 e−y2/2 = −e−y2/2. (51)

Thus while the eigenvalues of p̂2 + x̂2 would be positive if p̂ and x̂ are both Hermitian, the eigenvalues of p̂2 + x̂2

would be negative if p̂ and x̂ are both anti-Hermitian.
Thus for Ĥ = p̂2 + x̂2, while both x̂ and p̂ might be Hermitian (or self-adjoint) when acting on their own

eigenstates that does not make them Hermitian when acting on the eigenstates of Ĥ . Ditto Ĥ = p̂2 + ix̂3.
This is the secret of PT .
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Now we can always make a similarity transformation through any angle such as Ŝ = exp(θp̂x̂) that effects

Ŝp̂Ŝ−1 = p̂ exp(−iθ), Ŝx̂Ŝ−1 = x̂ exp(iθ). Ordinarily this is not of any significance since we work with

Hermitian operators that have normalizable wave functions on the real axis, and we have no need to go into the

complex plane. But if the wave functions are not normalizable on the real axis, we may be able to continue into

a so-called “Stokes wedge” in the complex plane where they then are normalizable, and cross over a “Stokes

line” that divides the two regions (θ = π/4 in the harmonic oscillator case). This is what happens with

Ĥ = p̂2 + ix̂3.

However, independent of whether or not a Hamiltonian might be Hermitian, if it has an antilinear symmetry

it must be self-adjoint in some Stokes wedge in the complex plane. And in such wedges one must use the 〈L|R〉
norm.

Now this is true no matter whether energies are all real, whether some or all energies come in complex

conjugate pairs, or whether the Hamiltonian is a non-diagonalizable Jordan-block Hamiltonian. These latter

two cases represent Hamiltonians that are not Hermitian but are self-adjoint.

The art of the PT symmetry program is to find the appropriate Stokes wedges in the

complex plane.

Theorem: Antilinear symmetry implies self-adjointness, while self-adjointness implies

antilinearity.

Thus as with self-adjointness, Hermiticity is determined not by the form of the operators

(i.e. not by inspection) but by the boundary conditions.
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9 Conformal Gravity and Pais-Uhlenbeck Oscillator

Conformal gravity is a fourth-order derivative theory of gravity with action IW = −αg
∫
d4x(−g)1/2CλµνκC

λµνκ,

where Cλµνκ is the Weyl tensor. When coupled to Einstein gravity, and linearized around flat spacetime

according to gµν = ηµν + hµν, one can find a gauge (the conformal gauge) in which the fluctuation equations

are diagonal in the (µ, ν) indices and can be associated with the generic scalar field action IS, propagator

D(k2), and Hamiltonian H =
∫
d3xT00, where

IS =
1

2

∫
d4x

[
∂µ∂νφ∂

µ∂νφ− (M 2
1 + M 2

2 )∂µφ∂
µφ + M 2

1M
2
2φ

2
]
,

D(k2) =
1

(k2 −M 2
1 )(k2 −M 2

2 )
=

1

M 2
1 −M 2

2

( 1

k2 −M 2
1

− 1

k2 −M 2
2

)
, (52)

T00 = π0φ̇ +
1

2
π2

00 +
1

2
(M 2

1 + M 2
2 )φ̇2 − 1

2
M 2

1M
2
2φ

2 − 1

2
πijπ

ij +
1

2
(M 2

1 + M 2
2 )φ,iφ

,i,

πµ =
∂L
∂φ,µ

− ∂λ
 ∂L
∂φ,µ,λ

 , πµλ =
∂L
∂φ,µ,λ

. (53)

The relative minus sign in D(k2) suggests that the theory contains states of negative norm. To find out whether

or not this is the case, following Bender and Mannheim (2008) we explicitly construct the Hilbert space.

To see what is involved we note that on setting ω1 = (k̄2 + M 2
1 )1/2, ω2 = (k̄2 + M 2

2 )1/2 and dropping the

spatial dependence, the action reduces to the quantum-mechanical Pais-Uhlenbeck oscillator model action

IPU =
γ

2

∫
dt

[
z̈2 −

(
ω2

1 + ω2
2

)
ż2 + ω2

1ω
2
2z

2
]
, (54)

and with x = ż, [z, pz] = i, [x, px] = i, the Hamiltonian is given by (Mannheim and Davidson (2000))

HPU =
p2
x

2γ
+ pzx +

γ

2

(
ω2

1 + ω2
2

)
x2 − γ

2
ω2

1ω
2
2z

2. (55)
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When ω1 and ω2 are both taken to be real and positive, all the eigenvalues of HPU are real. When M 2
1 = M 2

2

and ω1 = ω2, HPU, and thus the Hamiltonian associated with the pure conformal gravity IW, are Jordan-block

(the partial fraction decomposition of D(k2) in (52) becomes undefined. When ω1 = α+ iβ, ω1 = α− iβ, the

energy eigenvalues appear in complex conjugate pairs. In all the three cases HPU has an antilinear symmetry.

The wave function associated with E = (ω1 + ω2) is of the form (x = ż)

ψ(z, x) = exp
[γ
2

(ω1 + ω2)ω1ω2z
2 + iγω1ω2zx−

γ

2
(ω1 + ω2)x2

]
. (56)

The wave function associated with E = 2ω where ω1 = ω2 = ω is of the form

ψ(z, x) = exp
[
γω3z2 + iγω2zx− γωx2

]
. (57)

The wave function associated with E = 2α where ω1 = α + iβ, ω1 = α− iβ (α > 0) is of the form

ψ(z, x) = exp
[
γα(α2 + β2)z2 + iγ(α2 + β2)zx− γαx2

]
. (58)

None of these wave functions is normalizable on the real z axis, but all are normalizable on the pure imaginary

z axis. Thus all are self-adjoint in appropriate Stokes wedges that contain the imaginary z axis. We cannot use

the Dirac norm in these wedges. Instead we must use the 〈L|R〉 norm, and it is found (Bender and Mannheim)

to never be negative.

The propagator is not given by 〈ΩR|T (φ(x)φ(0))|ΩR〉 but by 〈ΩL|T (φ(x)φ(0))|ΩR〉 = 〈ΩR|V T (φ(x)φ(0))|ΩR〉
instead. Thus one cannot identify a c-number propagator such D(k2) = 1/k4 with a quantum field theory

matrix element until one first constructs the appropriate Hilbert space.
For conformal gravity, it is the V operator that generates the relative minus sign in D(k2) in (52) and not

any Hilbert space negative norm structure. In consequence conformal gravity is ghost free and unitary. With
it also being renormalizable (its coupling constant αg being dimensionless), it provides a consistent quantum
gravitational theory, one constructed in the four spacetime dimensions for which there is evidence.
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10 The Hermiticity Puzzle – Where Does Hermiticity Come From?

If we introduce a path integral

W (J) =
∫
D[φ]ei[IS(φ)+Jφ] (59)

everything is classical. Thus no reference to any Hilbert space and no a priori justification for taking the

quantum Hamiltonian to be Hermitian, since that is a quantum statement.

Consider action

I =
∫ t
0
dtẋ2, x(t = 0) = xi, x(t = T ) = xf , ẍ = 0, xCL(t) =

(xf − xi)t
T

+ xi (60)

Let us derive the classical path by a variational principle. Consider arbitrary path between fixed end points

x(t) = xCL(t) +
∑
n
an sin

nπt
T

 (61)

We obtain

I =
(xf − xi)2

T
+

∑
n

a2
nn

2π2

2T
. (62)

So take derivative with respect to each an, and find minimum action is when all an are zero, and then stationary

solution is x = xCL(t).

But what do we do with all the an? Do they play a role in physics? Feynman: integrate then back up. We

obtain

Πn

∫ ∞
−∞ dane

iI/h̄ = 〈x(t = 0)|x(t = T )〉 = 〈x(t = 0)|e−iĤT |x(t = 0)〉. (63)

Global approach to quantum mechanics. But where is Hermiticity?
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One can implement CPT on every classical path, and thus if path integral is CPT invariant, then the

associated quantum theory will be CPT invariant too, regardless of whether or not the quantum Hamiltonian

might be Hermitian.

Making the path integral CPT invariant is actually non-trivial for gauge theories, since need a rule to know

to use combination i∂µ − eAµ in path integral rather than the in a sense more natural, but not viable, purely

real derivative ∂µ − eAµ. Even though in quantum theory it is i∂µ that is Hermitian rather than ∂µ, the path

integral does not know this. However, classically it is i∂µ that is CPT even, just like eAµ. It is thus CPT

symmetry that forces i∂µ − eAµ in the path integral.

Now W (J) generates the c-number quantum theory Green’s functions, but how do we know that we can

associate them with the matrix element of a q-number operator of the form 〈ΩR|T (φ(x)φ(0))|ΩR〉 rather than

with 〈ΩL|T (φ(x)φ(0))|ΩR〉 = 〈ΩR|V T (φ(x)φ(0))|ΩR〉 instead. So how does Hermiticity come into physics.

Answer: Path integral always exists with some real or complex measure if it is CPT invariant (analog of

antilinearity implies self-adjointness). The underlying quantum Hamiltonian is Hermitian if path integral exists

with a real measure, in which case the left vacuum is the conjugate of the right vacuum and V = I . However,

if, in analog to wave functions, the path integral only exists if we need to continue the measure into the complex

plane, then the underlying quantum theory is of the antilinear Bender type.

Antilinear CPT symmetry thus has primacy over Hermiticity, and it is antilinearity, not

Hermiticity, that should be taken as a guiding principle for quantum theory.
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11 SUMMARY

WE NEVER NEED TO POSTULATE HERMITICITY – ONLY NEED
ANTILINEARITY.

HAMILTONIANS THAT HAVE AN ANTILINEAR SYMMETRY CAN
BE HERMITIAN AS WELL. HERMITIAN ONLY IF PATH INTEGRAL
EXISTS WITH REAL MEASURE.

ANTILINEAR SYMMETRY FOLLOWS FROM THE CONSERVATION
OF PROBABILITY AND COMPLEX LORENTZ INVARIANCE ALONE.

ANTILINEAR CPT SYMMETRY HAS PRIMACY OVER HERMITIC-
ITY, AND IT IS CPT NOT HERMITICITY THAT SHOULD BE TAKEN
AS A GUIDING PRINCIPLE FOR QUANTUM THEORY.
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12 COMPLEX LORENTZ INVARIANCE

Lorentz transformations are of the form Λ = eiw
µνMµν with six angles wµν =

−wνµ and six Lorentz generators Mµν = −Mνµ that obey

[Mµν,Mρσ] = i(−ηµρMνσ + ηνρMµσ − ηµσMρν + ηνσMρµ). (64)

Under a Lorentz transformation the line element transforms as

xαηαβx
β → xαΛ̃ηαβΛxβ, (65)

(tilde denotes transpose), with Λ̃ = eiw
µνM̃µν . Given the Lorentz algebra one

has eiw
µνM̃µνηαβ = ηαβe

−iwµνMµν (i.e. Minkowski metric orthogonal), with
the line element thus being invariant. While this analysis familiarly holds for
real wµν, since wµν plays no explicit role in it, the analysis equally holds if
wµν is complex.
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For a general spin zero Lagrangian where wµνMµν acts as

wµν(xµpν − xνpµ) = 2wµνxµpν.

Under an infinitesimal Lorentz transformation the action I =
∫
d4xL(x) trans-

forms as

δI = 2wµν
∫
d4xxµ∂νL(x) = 2wµν

∫
d4x∂ν[xµL(x)], (66)

to thus be a total derivative and thus be left invariant. However the change
will be a total derivative even if wµν is complex. So again we see that we
have invariance under complex Lorentz transformations.
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For Majorana spinors ψ under a Lorentz transformation we have

ψ̃γ0ψ → ψ̃eiw
µνM̃µνγ0eiw

µνMµνψ = ψ̃γ0e−iw
µνMµνeiw

µνMµνψ = ψ̃γ0ψ. (67)

So once again we see that we have invariance under complex Lorentz transforms and not
just under real ones.

For Dirac spinors written as a sum of two Majorana spinors ψ(x) = ψ1(x) + iψ2(x), we
find that under P̂ , T̂ , and ĈP̂ T̂

P̂ψ(~x, t)P̂−1 = γ0ψ(−~x, t), T̂ψ(~x, t)T̂−1 = γ1γ2γ3ψ(~x,−t),
ĈP̂ T̂ [ψ1(x) + iψ2(x)]T̂−1P̂−1Ĉ−1 = iγ5[ψ1(−x)− iψ2(−x)], (68)

The last of these relations is central to the derivation of the CPT theorem.

THE TAKEAWAY

Complex Lorentz invariance is just as natural as real Lorentz invariance.
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13 RELATION OF PT AND CPT TO COMPLEX LORENTZ TRANSFORMATIONS

On coordinates PT implements xµ → −xµ, and thus so does CPT since the coordinates are
charge conjugation even. With a boost in the x1-direction implementing x′1 = x1 cosh ξ +
t sinh ξ, t′ = t cosh ξ + x1 sinh ξ, with complex ξ = iπ we obtain

Λ0
1(iπ) : x1 → −x1, t→ −t,

Λ0
2(iπ) : x2 → −x2, t→ −t,

Λ0
3(iπ) : x3 → −x3, t→ −t,

πτ = Λ0
3(iπ)Λ0

2(iπ)Λ0
1(iπ) : xµ → −xµ. (69)

Complex πτ implements the linear part of a PT and CPT transformation on coordinates.

With Λ0
i(iπ) implementing e−iπγ

0γi/2 = −iγ0γi for Dirac gamma matrices, on introducing

π̂τ̂ = Λ̂0
3(iπ)Λ̂0

2(iπ)Λ̂0
1(iπ), (70)

we obtain

π̂τ̂ψ1(x)τ̂−1π̂−1 = γ5ψ1(−x), π̂τ̂ψ2(x)τ̂−1π̂−1 = γ5ψ2(−x). (71)

Thus up to an overall complex phase, quite remarkably we recognize this transformation as
acting as none other than the linear part of a CPT transformation since ĈP̂ T̂ [ψ1(x) +
iψ2(x)]T̂−1P̂−1Ĉ−1 = iγ5[ψ1(−x)− iψ2(−x)].

Thus CPT is naturally associated with the complex Lorentz group.
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With the Lagrangian density L(x) being spin zero, π̂τ̂ effects π̂τ̂L(x)τ̂−1π̂−1 = L(−x)
up to a phase. We will show below that the phase is one. Thus, with K denoting complex
conjugation, when acting on a spin zero Lagrangian we can identify ĈP̂ T̂ = Kπ̂τ̂ . On
applying π̂τ̂ we obtain

ĈP̂ T̂
∫
d4xL(x)[ĈP̂ T̂ ]−1 = Kπ̂τ̂

∫
d4xL(x)τ̂−1π̂−1K

= K
∫
d4xL(−x)K = K

∫
d4xL(x)K =

∫
d4xL∗(x). (72)

Establishing the CPT theorem is thus reduced to showing that L(x) = L∗(x).
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14 CPT THEOREM WITHOUT HERMITICITY

C P T CP CT PT CPT
ψ̄ψ + + + + + + +

ψ̄iγ5ψ + - - - - + +
ψ̄γ0ψ - + + - - + -
ψ̄γiψ - - - + + + -
ψ̄γ0γ5ψ + - + - + - -
ψ̄γiγ5ψ + + - + - - -

ψ̄i[γ0, γi]ψ - - + + - - +
ψ̄i[γi, γj]ψ - + - - + - +
ψ̄[γ0, γi]γ5ψ - + - - + - +
ψ̄[γi, γj]γ5ψ - - + + - - +

Table 1: C, P, and T assignments for fermion bilinears

CPT phase alternates with spin. All spin zero quantities have even CPT .
Also all are real (Mannheim 2018). Also, because of Lorentz invariance,
Lagrangians have to be spin zero. And as we have seen, the action

I =
∫
d4xL(x)

is invariant under complex Lorentz invariance.
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C P T CP CT PT CPT
ψ̄ψ + + + + + + +

ψ̄iγ5ψ + - - - - + +
ψ̄ψψ̄ψ + + + + + + +

ψ̄ψψ̄iγ5ψ + - - - - + +
ψ̄iγ5ψψ̄iγ5ψ + + + + + + +
ψ̄γµψψ̄γµψ + + + + + + +
ψ̄γµψψ̄γµγ

5ψ - - + + - - +
ψ̄γµγ5ψψ̄γµγ

5ψ + + + + + + +
ψ̄i[γµ, γν ]ψψ̄i[γµ, γν ]ψ + + + + + + +
ψ̄i[γµ, γν ]ψψ̄[γµ, γν ]γ

5ψ + - - - - + +
ψ̄i[γµ, γν ]γ5ψψ̄i[γµ, γν ]γ

5ψ + + + + + + +

Table 2: C, P, and T assignments for fermion bilinears and quadrilinears that have spin zero

All spin zero combinations have CPT even and real.

15 PROOF OF THE CPT THEOREM

Since probability conservation requires an antilinear symmetry, we have

Kπ̂τ̂
∫
d4xL(x)τ̂−1π̂−1K = K

∫
d4xL(−x)K = K

∫
d4xL(x)K =

∫
d4xL∗(x)

= K
∫
d4xL(x)K =

∫
d4xL(x), (73)

where we have used K as the antilinear symmetry needed for probability conservation.
Thus infer that all the numerical coefficients in L(x) are real, that L(x) = L∗(x), and
that

∫
d4xL(x) is CPT invariant, with the CPT theorem thus being extended to

non-Hermitian Hamiltonians.
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16 SOME IMPLICATIONS

(1) In the complex conjugate energy case time-independent transitions occur between decaying and growing

states. A decay such as K+ → π+π0 can thus occur if the Hamiltonian has an antilinear symmetry, even

though it would be forbidden if the Hamiltonian is Hermitian. Then the CPT theorem in the antilinear case

ensures that its rate is equal to that of K− → π−π0. We thus extend the CPT theorem to unstable states.

(2) In those cases in which charge conjugation is separately conserved (in non-relativistic quantum mechanics

C plays no role since one is below the threshold for particle production) CPT reduces to PT , even if the

Hamiltonian is not Hermitian. (Even for non-Hermitian Hamiltonians CPT plus C implies PT .) In such

cases we recover the non-Hermitian PT program of Bender and collaborators, and thus put the PT symmetry

program on a quite firm theoretical foundation.

(3). Can extend Goldstone theorem and Higgs mechanism to non-Hermitian case with CPT symmetry.

(Alexandre, Ellis, Millington and Seynaeve, 2018; Mannheim, 2018)

(4) The conformal gravity theory with action IW = −αg
∫
d4x(−g)1/2CλµνκC

λµνκ where Cλµνκ is the Weyl
conformal tensor falls into the non-Hermitian, CPT symmetric category (Bender and Mannheim 2008), and is
able to be ghost free and unitary at the quantum level because of it (the 〈L|R〉 norm is positive definite), to thus
provide a fully consistent quantum theory of gravity without any of the string theory need for supersymmetry
or extra spacetime dimensions. It has been shown (Mannheim) that conformal gravity solves the dark matter,
dark energy and quantum gravity problems. If conformal gravity can replace Einstein gravity then one of
the four fundamental forces is a Bender PT -type theory.
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(3) Our derivation of the CPT theorem leads to L = L∗ and thus to H = H∗. In contrast, in the standard derivation of
the CPT theorem H = H† is input. Here H = H∗ is output, with it being probability conservation plus complex Lorentz
invariance that is input. Now in one of the standard derivations of the CPT theorem (see e.g. Weinberg Quantum Field
Theory I) one notes that all spin zero multilinears are Hermitian. Then a Hermiticity assumption requires all numerical
coefficients be real and the CPT theorem follows. Remarkably then, both types of derivation lead to the very same functional
form for the action, with real numerical coefficients in each case. So how can we tell them apart.
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