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1 The Cosmological Background

Starting point: the cosmological principle: all points are equivalent

Isotropy: Universe looks same in all directions. Homogeneity: no place is
special

Possibilities: An infinite plane, a closed spherical surface, an open hyper-
boloid

Geometrically: a maximally 3-symmetric space of constant 3-curvature k,
with k = 0, k > 0 or k < 0

Universe is expanding with expansion radius a(t) and on largest scales obeys
the cosmological principle

With (i, j, k) = (r, θ, ϕ) and 3-metric γ̃ij gives Robertson-Walker line element:

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
− r2dθ2 − r2 sin2 θdϕ2

]
= c2dt2 − a2(t)γ̃ijdx

idxj (1.1)

and 3-dimensional spatial Riemann tensor on every comoving time slice of
the form

R̃ijkℓ = k[γ̃jkγ̃iℓ − γ̃ikγ̃jℓ]. (1.2)

So how good is the cosmological principle?
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1.1 Hubble Flow

Hubble identified a systematic behavior in galaxies: they were all redshifted with respect to us, i.e., moving

away from us, and had velocities of the form v = HD, where D is the distance from us and H is a constant.

Rationale: No point is special. Consider three equally spaced points A, B, C on a straight line. Let B have a

velocity v with respect to A. Let C have a velocity v with respect to B. Then C has a velocity 2v with respect

to A, and is twice as far from A as B is. Thus v = HD.

A B C

A VBA = v VCB = v, vCA = 2v (1.3)

Hubble plot (from Type 1A superernova data) as log plot with slope H = 75 Km/sec/Mps, i.e. H−1 = 4×1017

seconds, a first estimate of the age of the Universe.
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1.2 Cosmic Microwave Background (CMB)

Expect and find within small errors CMB to be uniform in every direction, and have the form of a blackbody

with energy density ρ = π2k4BT
4/15c3ℏ3 and pressure p = ρ/3, to give a current Universe temperature of order

3◦K.
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Fig. 2.—Preliminary spectrum of the cosmic microwave background from 
the FIRAS instrument at the north Galactic pole, compared to a blackbody. 
Boxes are measured points and show size of assumed 1% error band. The units 
for the vertical axis are 10“4 ergs s -1 cm-2 sr~1 cm. 

The error band in Figure 2 is a conservative estimate of the 
systematic errors in our current calibration algorithm, taken to 
be 1% of the peak intensity of the spectrum. Since the data 
show a good null both when the FIRAS is looking at the external 
calibrator and at the sky, one can determine from the interfero- 
grams alone that the spectrum of the sky is close to a blackbody, 
regardless of the details of the data reduction and calibration. 

IV. DISCUSSION 
The CMBR temperature reported here lies between the 

average of direct ground-based measurements, 2.655 ± 0.036 
K (see Smoot et al 1988 for a tabulation), and the precise 
measurement of 2.783 ± 0.025 K (1 o) at 0.8 cm"1 made from a 
balloon by Johnson and Wilkinson (1987). At the CN tran- 
sition frequency, the temperature measured by FIRAS is 
2.735 ± 0.06 K, compared to 2.70 ± 0.04 K from Meyer and 
Jura (1985), 2.796( +0.014, -0.039) K from Crane et al. (1989), 
and 2.77 ± 0.4 K from Kaiser and Wright (1990). The FIRAS 
data are not consistent with the departures from a blackbody 
spectrum reported by Matsumoto et al. (1988). 

Using the conservative 1% error bands, these new data set a 
3 a upper limit on the Comptonization y parameter of 0.001 
and on the chemical potential g of 0.009. This value of g is 
based on a fit to a pure Bose-Einstein spectrum with g inde- 
pendent of frequency. The hot smooth intergalactic medium 
(IGM) suggested to explain the cosmic X-ray background by 

Fig. 3.—Composite plot of recent measurements of the temperature of the 
sky (temperature of the cosmic background vs. wavelength). A = Sironi et al. 
(1987), B = Levin et al. (1987), C = Sironi and Bonelli (1986), D = De Amici et 
al. (1988), E = Mandolesi et al. (1986), F = Kogut et al. (1988), G = Johnson 
and Wilkinson (1987), H = Smoot et al. (1985), I = Smoot et al. (1987), 
J = Crâne et al. (1989), K = Meyer et al. (1989), Palazzi et al. (1990), 
L = Matsumoto et al. (1988). 

Field and Perrenod (1977), Guilbert and Fabian (1986), and 
recalculated by Taylor and Wright (1989) can be ruled out, 
since the predicted X-ray background scales as y2. The new 
limits on y would limit the X-ray background to only 1/36 of 
the observed value, even at a heating redshift as small as zc = 2. 
Many other sources of distortions of the CMBR spectrum 
(Bond, Carr, and Hogan 1986) are also severely constrained. 

A more accurate determination of the spectrum will be made 
after further sky observations, calibrations, and refinement of 
the calibration algorithm. The ultimate accuracy of any mea- 
sured spectrum distortions should be limited only by the 
optical design and stability of the external calibrator and by 
the models of radiation from interstellar dust. 

It is a pleasure to acknowledge the vital contributions of all 
those at GSFC who devoted their efforts to making this chal- 
lenging mission not only possible but enjoyable as well. Special 
thanks are due to Paul Richards and Patrick Thaddeus for 
their early encouragement to the lead author, to Robert 
Maichle and Michael Roberto for leading the engineering 
effort on the FIRAS instrument, and to Shirley Read, Robert 
Kümmerer, and Leonard Olson for their leadership in software 
development for the FIRAS. 
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However on smaller scales (less than 200 or so Megaparsec) we see departures from homogeneity and isotropy,

with temperature fluctuations in the CMB being of oder ∆T/T = 10−5. Could these departures be described

by a small perturbation to uniformity. So need to develop a theory of cosmological perturbations.
ilc_9yr_moll4096.png (PNG Image, 4096 × 2048 pixels) - Scaled (34%)

ilc_9yr_moll4096.png (PNG Image, 4096 × 2048 pixels) - Scaled (34%)

Figure 1: The variation in temperature is of order 10−5. Small departure from uniformly expanding Hubble flow.
gh9_f02_L.png (PNG Image, 4096 × 3300 pixels) - Scaled (28%)

gh9_f02_L.png (PNG Image, 4096 × 3300 pixels) - Scaled (28%)

Figure 2: 30 percent dark matter 70 percent dark energy fit to angular momentum decomposition of the CMB fluctuations
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2 Cosmological Perturbation Theory

On introducing the conformal time τ and writing the expansion radius as Ω(τ) = a(t) according to

τ =

∫
dt

a(t)
, Ω(τ) = a(t), (2.1)

we take the background plus fluctuating line element to be of the scalar, vector, tensor (SVT) form

ds2 = −(gµν + hµν)dx
µdxν = Ω2(τ)

[
dτ 2 − dr2

1− kr2
− r2dθ2 − r2 sin2 θdϕ2

]
+ Ω2(τ)

[
2ϕdτ 2 − 2(∇̃iB +Bi)dτdx

i − [−2ψγ̃ij + 2∇̃i∇̃jE + ∇̃iEj + ∇̃jEi + 2Eij]dx
idxj

]
, (2.2)

where ∇̃i = ∂/∂xi and ∇̃i = γ̃ij∇̃j (with Latin indices) are defined with respect to the background 3-space metric γ̃ij.With

γ̃ij∇̃jVi = γ̃ij[∂jVi − Γ̃k
ijVk] (2.3)

for any three-vector Vi in a 3-space with 3-space connection Γ̃k
ij =

1
2 γ̃

kℓ[∂iγ̃ℓj + ∂jγ̃ℓi − ∂ℓγ̃ij], the elements of (2.2) obey

γ̃ij∇̃jBi = 0, γ̃ij∇̃jEi = 0, Eij = Eji, γ̃jk∇̃kEij = 0, γ̃ijEij = 0. (2.4)

As written, (2.2) contains ten elements, whose transformations are defined with respect to the background spatial sector
as four 3-dimensional scalars (ϕ, B, ψ, E) each with one degree of freedom, two transverse 3-dimensional vectors (Bi, Ei)
each with two independent degrees of freedom, and one symmetric 3-dimensional transverse-traceless tensor (Eij) with two
degrees of freedom, so 1 + 1 + 1 + 1 + 2 + 2 + 4 = 10. Since this a 3-dimensional SVT formalism we will need to
establish that it leads to fluctuation equations that are not 3-dimensionally but 4-dimensionally covariant.

To set up this SVT basis requires some specific asymptotic spatial boundary conditions. Thus on introducing the Green’s
function D that obeys ∇̃i∇̃iD(3)(x, x′) = γ̃−1/2δ3(x− x′) (where γ̃ is the determinant of γ̃ij), we for instance obtain

h0i = ∇̃iB +Bi, ∇̃ih
i0 = ∇̃i∇̃iB, B(x) =

∫
d3x′γ̃′1/2D(3)(x, x′)∇̃′

jh
j0(x′),

Bi(x) = h0i − ∇̃i

∫
d3x′γ̃′1/2D(3)(x, x′)∇̃′

jh
j0(x′), (2.5)

and thus require that the integral exist. As we see, the relation between h0i and the transverse Bi and longitudinal ∇̃iB is
nonlocal.
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3 Relating the SVT and hµν Fluctuation Bases

For simplicity we take the background metric to be −Ω2(τ)ηµν (i.e., k = 0), and set hµν = Ω2(τ)fµν, to obtain

ds2 = −[Ω2(τ)ηαβ + hαβ]dx
αdxβ

= −Ω2(τ)[ηαβ + fαβ]dx
αdxβ = Ω2(τ)

[
dτ 2 − δijdx

idxj − f00dτ
2 − 2f0idτdx

i − fijdx
idxj

]
. (3.1)

Identifying terms gives

2ϕ = −f00, Bi + ∇̃iB = f0i, fij = −2ψδij + 2∇̃i∇̃jE + ∇̃iEj + ∇̃jEi + 2Eij,

δijfij = −6ψ + 2∇̃i∇̃iE, ∇̃jfij = −2∇̃iψ + 2∇̃i∇̃k∇̃kE + ∇̃k∇̃kEi,

∇̃i∇̃jfij = −2∇̃k∇̃kψ + 2∇̃k∇̃k∇̃ℓ∇̃ℓE =
4

3
∇̃k∇̃k∇̃ℓ∇̃ℓE +

1

3
∇̃k∇̃kδijfij = 4∇̃k∇̃kψ + ∇̃k∇̃k(δijfij), (3.2)

so that

2ϕ = −f00, B =

∫
d3yD(3)(x− y)∇̃i

yf0i, Bi = f0i − ∇̃iB,

ψ =
1

4

∫
d3yD(3)(x− y)∇̃k

y∇̃ℓ
yfkℓ −

1

4
δkℓfkℓ,

E =

∫
d3yD(3)(x− y)

[
3

4

∫
d3zD(3)(y − z)∇̃k

z∇̃ℓ
zfkℓ −

1

4
δkℓfkℓ

]
,

Ei =

∫
d3yD(3)(x− y)

[
∇̃j

yfij − ∇̃y
i

∫
d3zD(3)(y − z)∇̃k

z∇̃ℓ
zfkℓ

]
,

2Eij = fij + 2ψδij − 2∇̃i∇̃jE − ∇̃iEj − ∇̃jEi, (3.3)

with Bi, Ei and Eij then obeying (2.4). (In (3.3) in a symbol such as ∇̃i
y for instance the y indicates that the derivative is

taken with respect to the y coordinate.)
As we see, we need to go to fairly high derivatives in order to be able to express each of the SVT components entirely in

terms of combinations of components of the hµν.

7



4 Gauge Structure of the SVT Basis

In order to explore the gauge structure of the SVT basis we implement an infinitesimal 4-dimensional coordinate transfor-
mation x̄µ = xµ + ϵµ(x). It is convenient to write ϵµ in the scalar, vector form, viz.

ϵµ = Ω2(τ)fµ, f0 = −T, fi = Li + ∇̃iL δij∇̃jLi = ∇̃iLi = 0. (4.1)

With a general coordinate transformation being of the form ḡµν = (∂x̄µ/∂xσ)(∂x̄ν/∂xτ)gστ , to lowest order in ϵµ the line
element ds2 and the fluctuations hµν and fµν = Ω−2(x)hµν transform into

ds2 = −Ω2(τ)[ηαβ + f̄αβ]dx̄
αdx̄β

= Ω̄2(τ̄)
[
(1 + 2ϕ̄)dτ̄ 2 − 2(∇̃iB̄ + B̄i)dτ̄dx̄

i − [(1− 2ψ̄)δ̄ij + 2∇̃i∇̃jĒ + ∇̃iĒj + ∇̃jĒi + 2Ēij]dx̄
idx̄j

]
,

h̄µν = hµν − ∂νϵµ − ∂µϵν + 2Γλ
µνϵλ

= hµν − ∂νϵµ − ∂µϵν + Ω−2(τ)[ϵµ∂ν + ϵν∂µ − ϵληµνη
λσ∂σ]Ω

2(τ),

f̄µν = fµν − ∂νfµ − ∂µfν − Ω−2(τ)fληµνη
λσ∂σΩ

2(τ),

f̄00 = f00 + 2Ṫ + Ω−2(τ)[T∂0 + (Li + ∇̃iL)δ
ij∂j]Ω

2(τ),

f̄0i = f0i + ∂iT − L̇i − ∇̃iL̇,

f̄ij = fij − ∂i(Lj + ∇̃jL)− ∂j(Li + ∇̃iL)− δijΩ
−2(τ)[T∂0 + (Li + ∇̃iL)δ

ij∂j]Ω
2(τ), (4.2)

where the dot denotes derivative with respect to τ . Following some algebra we obtain

ϕ̄ = ϕ− Ṫ − Ω−1Ω̇T, B̄ = B + T − L̇, ψ̄ = ψ + Ω−1Ω̇T, Ē = E − L,

B̄i = Bi − L̇i, Ēi = Ei − Li, Ēij = Eij, (4.3)

and gauge invariant combinations take the form

ϕ̄+ ψ̄ + ˙̄B − ¨̄E = ϕ+ ψ + Ḃ − Ë, ψ̄ − Ω−1Ω̇(B̄ − ˙̄E) = ψ − Ω−1Ω̇(B − Ė),

B̄i − ˙̄Ei = Bi − Ėi, Ēij = Eij, (4.4)

Thus 1 + 1 + 2 + 2 = 6 = 10− 4 just as required.
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4.1 Fluctuations Around Flat

As a check, we note that for fluctuations around flat, i.e., Ω = 1, ds2 = (−ηµν − hµν)dx
µdxν, the gauge invariants are

ϕ+ Ḃ − Ë, ψ, B̄i − ˙̄Ei = Bi − Ėi, Ēij = Eij, (4.5)

and since in a flat background there is no Tµν (and thus no δTµν), then from the Einstein equations −(1/8πGN)Gµν = Tµν,
where the Einstein tensor is given in terms of the Ricci tensor Rµν and the Ricci scalar R by Gµν = Rµν − (1/2)gµνR, the
perturbed Einstein tensor δGµν is gauge invariant on its own, and evaluates to

δG00 = −2δab∇̃b∇̃aψ,

δG0i = −2∇̃iψ̇ + 1
2δ

ab∇̃b∇̃a(Bi − Ėi),

δGij = −2δijψ̈ − δabδij∇̃b∇̃a(ϕ+ Ḃ − Ë) + δabδij∇̃b∇̃aψ + ∇̃j∇̃i(ϕ+ Ḃ − Ë)− ∇̃j∇̃iψ

+ 1
2∇̃i(Ḃj − Ëj) +

1
2∇̃j(Ḃi − Ëi)− Ëij + δab∇̃b∇̃aEij,

gµνδGµν = −δG00 + δijδGij = 4δab∇̃b∇̃aψ − 6ψ̈ − 2δab∇̃b∇̃a(ϕ+ Ḃ − Ë), (4.6)

to thus depend on none other than the combinations given in (4.5). It is thus 4-dimensionally gauge invariant. Thus the
SVT basis leads to a fully 4-dimensionally covariant fluctuation equation even though the SVT basis itself
is only 3-dimensional.

4.2 General Case

When Ω depends on τ and we take k to be nonzero [background line element ds2 = Ω2(τ)(dτ 2 − γ̃ijdx
idxj)], the general

gauge invariants are

α = ϕ+ ψ + Ḃ − Ë, γ = ΩΩ̇−1ψ −B + Ė, Bi − Ėi, Eij. (4.7)

Interestingly, they have no explicit dependence on k even though it is nonzero.
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4.3 Perturbed Energy-Momentum Tensor

We take the background Tµν to be of the perfect fluid form

Tµν = (ρ+ p)UµUν + pgµν, (4.8)

with fluctuation

δTµν = (δρ+ δp)UµUν + δpgµν + (ρ+ p)(δUµUν + UµδUν) + phµν. (4.9)

Here gµνUµUν = −1, U 0 = Ω−1(τ), U0 = −Ω(τ), U i = 0, Ui = 0 for the background, while for the fluctuation we have

δg00U0U0 + 2g00U0δU0 = 0, (4.10)

i.e.

δU0 = −1

2
(g00)−1(−g00g00δg00)U0 = −Ω(τ)ϕ. (4.11)

Thus δU0 is not an independent degree of freedom. For the 3-vector we set δUi = Vi + ∇̃iV , where now γ̃ij∇̃jVi =
γ̃ij[∂jVi − Γ̃k

ijVk] = 0. As constructed, in general we have 11 fluctuation variables, the six from the metric together with the
three δUi, and δρ and δp. But we only have ten fluctuation equations −(1/8πGN)δGµν = δTµν. Thus to solve the theory
when there is both a δρ and a δp we will need some constraint between δp and δρ.

Proceeding as with the fluctuating metric, we find that for fluctuations around a background ds2 = Ω2(τ)(dτ 2−γ̃ijdxidxj),
the fluctuating δTµν gauge invariants are

V̂ = V − Ω2Ω̇−1ψ, V̂i = Vi, δρ̂ = δρ− 3(ρ+ p)ψ, δp̂ = δp+ ΩΩ̇−1ṗψ. (4.12)

Again there is no explicit dependence on k.
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4.4 The Fluctuation Equations

For the background Einstein equations we have

G00 = −3k − 3Ω̇2Ω−2, G0i = 0, Gij = γ̃ij

[
k − Ω̇2Ω−2 + 2Ω̈Ω−1

]
,

G00 + 8πGNT00 = −3k − 3Ω̇2Ω−2 + Ω2ρ = 0, Gij + 8πGNTij = γ̃ij

[
k − Ω̇2Ω−2 + 2Ω̈Ω−1 + Ω2p

]
= 0,

ρ = 3kΩ−2 + 3Ω̇2Ω−4, p = −kΩ−2 + Ω̇2Ω−4 − 2Ω̈Ω−3, p = −ρ− 1

3

Ω

Ω̇
ρ̇, (4.13)

(after setting 8πGN = 1), with the last relation following from ∇νT
µν = 0, viz. conservation of the background energy-

momentum tensor in the full 4-space. To solve these equations we would need an equation of state that would relate ρ and
p.

For δGµν we have

δG00 = −6kϕ− 6kψ + 6ψ̇Ω̇Ω−1 + 2Ω̇Ω−1∇̃a∇̃aB − 2Ω̇Ω−1∇̃a∇̃aĖ − 2∇̃a∇̃aψ,

δG0i = 3k∇̃iB − Ω̇2Ω−2∇̃iB + 2
..

ΩΩ−1∇̃iB − 2k∇̃iĖ − 2∇̃iψ̇ − 2Ω̇Ω−1∇̃iϕ+ 2kBi − kĖi

−BiΩ̇
2Ω−2 + 2Bi

..

ΩΩ−1 + 1
2∇̃a∇̃aBi − 1

2∇̃a∇̃aĖi,

δGij = −2
..

ψγ̃ij + 2Ω̇2γ̃ijϕΩ
−2 + 2Ω̇2γ̃ijψΩ

−2 − 2ϕ̇Ω̇γ̃ijΩ
−1 − 4ψ̇Ω̇γ̃ijΩ

−1 − 4
..

Ωγ̃ijϕΩ
−1

−4
..

Ωγ̃ijψΩ
−1 − 2Ω̇γ̃ijΩ

−1∇̃a∇̃aB − γ̃ij∇̃a∇̃aḂ + γ̃ij∇̃a∇̃a
..

E + 2Ω̇γ̃ijΩ
−1∇̃a∇̃aĖ

−γ̃ij∇̃a∇̃aϕ+ γ̃ij∇̃a∇̃aψ + 2Ω̇Ω−1∇̃j∇̃iB + ∇̃j∇̃iḂ − ∇̃j∇̃i

..

E − 2Ω̇Ω−1∇̃j∇̃iĖ

+2k∇̃j∇̃iE − 2Ω̇2Ω−2∇̃j∇̃iE + 4
..

ΩΩ−1∇̃j∇̃iE + ∇̃j∇̃iϕ− ∇̃j∇̃iψ + Ω̇Ω−1∇̃iBj +
1
2∇̃iḂj

−1
2∇̃i

..

Ej − Ω̇Ω−1∇̃iĖj + k∇̃iEj − Ω̇2Ω−2∇̃iEj + 2
..

ΩΩ−1∇̃iEj + Ω̇Ω−1∇̃jBi +
1
2∇̃jḂi

−1
2∇̃j

..

Ei − Ω̇Ω−1∇̃jĖi + k∇̃jEi − Ω̇2Ω−2∇̃jEi + 2
..

ΩΩ−1∇̃jEi −
..

Eij − 2Ω̇2EijΩ
−2

−2ĖijΩ̇Ω
−1 + 4

..

ΩEijΩ
−1 + ∇̃a∇̃aEij,

gµνδGµν = 6Ω̇2ϕΩ−4 + 6Ω̇2ψΩ−4 − 6ϕ̇Ω̇Ω−3 − 18ψ̇Ω̇Ω−3 − 12
..

ΩϕΩ−3 − 12
..

ΩψΩ−3 − 6
..

ψΩ−2 + 6kϕΩ−2

+6kψΩ−2 − 6Ω̇Ω−3∇̃a∇̃aB − 2Ω−2∇̃a∇̃aḂ + 2Ω−2∇̃a∇̃a
..

E + 6Ω̇Ω−3∇̃a∇̃aĖ

−2Ω̇2Ω−4∇̃a∇̃aE + 4
..

ΩΩ−3∇̃a∇̃aE + 2kΩ−2∇̃a∇̃aE − 2Ω−2∇̃a∇̃aϕ+ 4Ω−2∇̃a∇̃aψ. (4.14)

11



On using (4.13) for the background but without imposing any relation between the background ρ and p, we obtain
evolution equations (again with 8πGN = 1) of the form

∆00 = 6Ω̇2Ω−2(α− γ̇) + δρ̂Ω2 + 2Ω̇Ω−1∇̃a∇̃aγ = 0, (4.15)

∆0i = −2Ω̇Ω−1∇̃i(α− γ̇) + 2k∇̃iγ + (−4Ω̇2Ω−3 + 2
..

ΩΩ−2 − 2kΩ−1)∇̃iV̂

+k(Bi − Ėi) +
1
2∇̃a∇̃a(Bi − Ėi) + (−4Ω̇2Ω−3 + 2

..

ΩΩ−2 − 2kΩ−1)Vi = 0, (4.16)

∆ij = γ̃ij
[
2Ω̇2Ω−2(α− γ̇)− 2Ω̇Ω−1(α̇− γ̈)− 4Ω̈Ω−1(α− γ̇) + Ω2δp̂− ∇̃a∇̃a(α + 2Ω̇Ω−1γ)

]
+∇̃i∇̃j(α + 2Ω̇Ω−1γ) + Ω̇Ω−1∇̃i(Bj − Ėj) +

1
2∇̃i(Ḃj − Ëj) + Ω̇Ω−1∇̃j(Bi − Ėi) +

1
2∇̃j(Ḃi − Ëi)

−
..

Eij − 2kEij − 2ĖijΩ̇Ω
−1 + ∇̃a∇̃aEij = 0, (4.17)

γ̃ij∆ij = 6Ω̇2Ω−2(α− γ̇)− 6Ω̇Ω−1(α̇− γ̈)− 12Ω̈Ω−1(α− γ̇) + 3Ω2δp̂− 2∇̃a∇̃a(α + 2Ω̇Ω−1γ) = 0,

gµν∆µν = 3δp̂− δρ̂− 12
..

ΩΩ−3(α− γ̇)− 6Ω̇Ω−3(α̇− γ̈)− 2Ω−2∇̃a∇̃a(α + 3Ω̇Ω−1γ) = 0, (4.18)

where the gauge invariants are

α = ϕ+ ψ + Ḃ − Ë, γ = ΩΩ̇−1ψ −B + Ė, Bi − Ėi, Eij,

δρ̂ = δρ− 3(ρ+ p)ψ, δp̂ = δp+
Ω

Ω̇
ṗψ (4.19)

These ∆µν = 0 equations are remarkably compact and are manifestly 4-dimensionally gauge invariant, just as required. As
constructed, we have 11 fluctuation variables, the six from the metric together with δρ̂, δp̂, V̂ and the transverse 2-component
V̂i. But we only have ten fluctuation equations ∆µν = 0. Thus to solve the theory when there is both a δρ and a δp we will
need some constraint between δp and δρ. Usually one sets δp/δρ = v2, where v is the velocity of sound.
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4.5 Decomposition Theorem

To unravel these equations we introduce the decomposition theorem, an ansatz that claims that we can decouple the scalar,
vector and tensor sectors into nine equations for the fluctuation components, viz.

6Ω̇2Ω−2(α− γ̇) + δρ̂Ω2 + 2Ω̇Ω−1∇̃a∇̃aγ = 0,

−2Ω̇Ω−1∇̃i(α− γ̇) + 2k∇̃iγ + (−4Ω̇2Ω−3 + 2
..

ΩΩ−2 − 2kΩ−1)∇̃iV̂ = 0,

+k(Bi − Ėi) +
1
2∇̃a∇̃a(Bi − Ėi) + (−4Ω̇2Ω−3 + 2

..

ΩΩ−2 − 2kΩ−1)Vi = 0,

γ̃ij
[
2Ω̇2Ω−2(α− γ̇)− 2Ω̇Ω−1(α̇− γ̈)− 4Ω̈Ω−1(α− γ̇) + Ω2δp̂− ∇̃a∇̃a(α + 2Ω̇Ω−1γ)

]
+∇̃i∇̃j(α + 2Ω̇Ω−1γ) = 0,

Ω̇Ω−1∇̃i(Bj − Ėj) +
1
2∇̃i(Ḃj − Ëj) + Ω̇Ω−1∇̃j(Bi − Ėi) +

1
2∇̃j(Ḃi − Ëi) = 0,

−
..

Eij − 2kEij − 2ĖijΩ̇Ω
−1 + ∇̃a∇̃aEij = 0, (4.20)

with the trace condition being of the firm

3δp̂− δρ̂− 12
..

ΩΩ−3(α− γ̇)− 6Ω̇Ω−3(α̇− γ̈)− 2Ω−2∇̃a∇̃a(α + 3Ω̇Ω−1γ) = 0. (4.21)

With γ̃ij and ∇̃i∇̃j not being equal to each other, the fourth equation in (4.20) splits into two pieces

2Ω̇2Ω−2(α− γ̇)− 2Ω̇Ω−1(α̇− γ̈)− 4Ω̈Ω−1(α− γ̇) + Ω2δp̂ = 0, α+ 2Ω̇Ω−1γ = 0. (4.22)

and now we have ten fluctuation equations.
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However, this decomposition theorem is not obvious, since if S is a scalar then ∇̃iS is a vector, and thus we can not use
angular momentum conservation to decouple the scalar, vector and tensor components. Specifically, we note that if we have
a generic equation of the form

Bi + ∂iB = Ci + ∂iC, (4.23)

where the Bi and C i obey ∂iB
i = 0, ∂iC

i = 0, it does not follow that

Bi = Ci, ∂iB = ∂iC. (4.24)

since on applying ∂i to (4.23) we obtain

∂i∂i(B − C) = 0. (4.25)

Thus in Cartesian coordinates we can only obtain B − C = a + bix
i, where a and bi are constants. To be able to set

B = C (and thus Bi = C i) we need to set a = 0, bi = 0. Thus we can do by requiring that B − C vanishes at infinity,
in consequence of which it would then vanish everywhere.. Thus to get a decomposition theorem in this case, we need a
boundary condition. To see how this can work in the general case we need to decouple the fluctuation equations, with ∆00

being the only component of ∆µν that is already decoupled, being pure scalar sector.
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5 Decoupling the Fluctuation Equations

5.1 Some general tensor algebra relations

Starting from the general identities

∇k∇nTℓm −∇n∇kTℓm = T s
mRℓsnk + T s

ℓ Rmsnk, ∇k∇nAm −∇n∇kAm = AsRmsnk (5.1)

that hold for any rank two tensor or vector in any geometry, for the 3-space Robertson-Walker geometry where R̃msnk =
k(γ̃snγ̃mk − γ̃mnγ̃sk) we obtain

∇̃i∇̃a∇̃aAj − ∇̃a∇̃a∇̃iAj = 2kγ̃ij∇̃aA
a − 2k(∇̃iAj + ∇̃jAi),

∇̃j∇̃a∇̃aAj = (∇̃a∇̃a + 2k)∇̃jAj, ∇̃j∇̃iAj = ∇̃i∇̃jAj + 2kAi (5.2)

for any 3-vector Ai in a maximally symmetric 3-geometry with 3-curvature k. Similarly, noting that for any scalar S in any
geometry we have

∇a∇b∇iS = ∇a∇i∇bS = ∇i∇a∇bS +∇sSRbsia,

∇ℓ∇k∇n∇mS = ∇n∇m∇ℓ∇kS +∇n[∇sSRksmℓ] +∇s∇kSRmsnℓ +∇m∇sSRksnℓ +∇ℓ[∇sSRmsnk], (5.3)

in a Robertson-Walker 3-geometry background we obtain

∇̃a∇̃a∇̃iS = ∇̃i∇̃a∇̃aS + 2k∇̃iS, ∇̃a∇̃a∇̃i∇̃jS = ∇̃i∇̃j∇̃a∇̃aS + 6k(∇̃i∇̃j − 1
3 γ̃ij∇̃a∇̃a)S,

∇̃a∇̃a∇̃i∇̃jS = ∇̃i∇̃j∇̃a∇̃aS + 6k∇̃i∇̃jS − 2kγ̃ij∇̃a∇̃aS. (5.4)

5.2 Scalar sector

Thus we find the pure scalar

∇̃i∆0i = ∇̃a∇̃a
[
− 2Ω̇Ω−1(α− γ̇) + 2kγ + (−4Ω̇2Ω−3 + 2

..

ΩΩ−2 − 2kΩ−1)V̂
]
= 0, (5.5)

5.3 Vector sector

and thus the pure vector sector

(∇̃k∇̃k − 2k)∆0i = (∇̃k∇̃k − 2k)
[
k(Bi − Ėi) +

1
2∇̃a∇̃a(Bi − Ėi) + (−4Ω̇2Ω−3 + 2

..

ΩΩ−2 − 2kΩ−1)Vi

]
= 0. (5.6)
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Also we obtain

ϵijℓ∇̃j∆0i = ϵijℓ∇̃j

[
k(Bi − Ėi) +

1
2∇̃a∇̃a(Bi − Ėi) + (−4Ω̇2Ω−3 + 2

..

ΩΩ−2 − 2kΩ−1)Vi

]
= 0. (5.7)

5.4 Scalar, vector and tensor sector

Now in any maximally symmetric space for any given Eij that is transverse and traceless, it follows that the quantity
∇̃a∇̃aEij is transverse and traceless too. Thus given (5.2) we obtain

∇̃j∆ij = ∇̃i[2Ω̇
2Ω−2(α− γ̇)− 2Ω̇Ω−1(α̇− γ̈)− 4Ω̈Ω−1(α− γ̇) + Ω2δp̂+ 2k(α + 2Ω̇Ω−1γ)]

+[∇̃a∇̃a + 2k][12(Ḃi − Ëi) + Ω̇Ω−1(Bi − Ėi)] = 0, (5.8)

∇̃i∇̃j∆ij = ∇̃a∇̃a[2Ω̇2Ω−2(α− γ̇)− 2Ω̇Ω−1(α̇− γ̈)− 4Ω̈Ω−1(α− γ̇) + Ω2δp̂

+2k(α + 2Ω̇Ω−1γ)] = 0. (5.9)

5.5 Scalar sector

Thus we obtain the pure scalar sector

3∇̃i∇̃j∆ij − ∇̃a∇̃a(γ̃ij∆ij) = 2∇̃2[∇̃2 + 3k](α + 2Ω̇Ω−1γ) = 0, (5.10)

∇̃i∇̃j∆ij + kγ̃ij∆ij = [∇̃2 + 3k][2Ω̇2Ω−2(α− γ̇)− 2Ω̇Ω−1(α̇− γ̈)− 4Ω̈Ω−1(α− γ̇) + Ω2δp̂] = 0. (5.11)

We now define A = 2Ω̇2Ω−2(α− γ̇)− 2Ω̇Ω−1(α̇− γ̈)− 4Ω̈Ω−1(α− γ̇) + Ω2δp̂ and C = α+ 2Ω̇Ω−1γ. And using (5.4) obtain

(∇̃a∇̃a + k)∇̃i(A+ 2kC) = ∇̃i(∇̃a∇̃a + 3k)(A+ 2kC), (5.12)

and thus with (5.10) and (5.11) obtain

(∇̃a∇̃a − 2k)(∇̃a∇̃a + k)∇̃i(A+ 2kC) = ∇̃i∇̃a∇̃a(∇̃b∇̃b + 3k)(A+ 2kC) = 0. (5.13)
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5.6 Vector sector

Consequently, on comparing with (5.8) we obtain

(∇̃a∇̃a − 2k)(∇̃b∇̃b + k)∇̃j∆ij = (∇̃a∇̃a − 2k)(∇̃b∇̃b + k)[∇̃c∇̃c + 2k][12(Ḃi − Ëi) + Ω̇Ω−1(Bi − Ėi)] = 0, (5.14)

to give a relation that only involves Bi − Ėi.

5.7 Vector and tensor sector

To obtain a relation that involves Eij we proceed as follows. We note that sector of ∆ij that contains the above A and C
can be written as

Dij = γ̃ij(A− ∇̃a∇̃aC) + ∇̃i∇̃jC. (5.15)

We thus introduce

Aij = Dij −
1

3
γ̃ijγ̃

abDab = (∇̃i∇̃j − 1
3 γ̃ij∇̃a∇̃a)C,

Bij = ∆ij −
1

3
γ̃ijγ̃

ab∆ab = (∇̃i∇̃j − 1
3 γ̃ij∇̃a∇̃a)C

+ Ω̇Ω−1∇̃i(Bj − Ėj) +
1
2∇̃i(Ḃj − Ëj) + Ω̇Ω−1∇̃j(Bi − Ėi) +

1
2∇̃j(Ḃi − Ëi)

−
..

Eij − 2kEij − 2ĖijΩ̇Ω
−1 + ∇̃a∇̃aEij = 0, (5.16)

with (5.16) defining Aij and Bij, and with A dropping out. Using (5.2) and the third relation in (5.4) we obtain

(∇̃b∇̃b − 3k)Aij = (∇̃i∇̃j − 1
3 γ̃ij∇̃a∇̃a)(∇̃b∇̃b + 3k)C, (5.17)

and via (5.4) and (5.10) thus obtain

(∇̃a∇̃a − 6k)(∇̃b∇̃b − 3k)Aij = (∇̃i∇̃j − 1
3 γ̃ij∇̃a∇̃a)∇̃b∇̃b(∇̃c∇̃c + 3k)C = 0. (5.18)

Comparing with the structure of ∆ij and γ̃
ij∆ij, we thus obtain

(∇̃a∇̃a − 6k)(∇̃b∇̃b − 3k)[Bij − Aij] = (∇̃a∇̃a − 6k)(∇̃b∇̃b − 3k)
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×
[
Ω̇Ω−1∇̃i(Bj − Ėj) +

1
2∇̃i(Ḃj − Ëj) + Ω̇Ω−1∇̃j(Bi − Ėi) +

1
2∇̃j(Ḃi − Ëi)

−
..

Eij − 2kEij − 2Ω̇Ω−1Ėij + ∇̃a∇̃aEij

]
= 0. (5.19)

We now note that for any vector Ai that obeys ∇̃iAi = 0, through repeated use of the first relation in (5.2) we obtain

(∇̃b∇̃b − 3k)(∇̃iAj + ∇̃jAi) = ∇̃i(∇̃b∇̃b + k)Aj + ∇̃j(∇̃b∇̃b + k)Ai,

(∇̃a∇̃a − 6k)(∇̃b∇̃b − 3k)(∇̃iAj + ∇̃jAi) = ∇̃i(∇̃a∇̃a − 2k)(∇̃b∇̃b + k)Aj + ∇̃j(∇̃a∇̃a − 2k)(∇̃b∇̃b + k)Ai.

(5.20)

On using the first relation in (5.2) again, it follows that

(∇̃c∇̃c − 2k)(∇̃a∇̃a − 6k)(∇̃b∇̃b − 3k)(∇̃iAj + ∇̃jAi)

= ∇̃i(∇̃c∇̃c + 2k)(∇̃a∇̃a − 2k)(∇̃b∇̃b + k)Aj + ∇̃j(∇̃c∇̃c + 2k)(∇̃a∇̃a − 2k)(∇̃b∇̃b + k)Ai. (5.21)

5.8 Vector sector

On setting Ai =
1
2(Ḃi − Ëi) + Ω̇Ω−1(Bi − Ėi) (so that Ai is such that ∇̃iAi = 0), and recalling (5.14) we obtain

(∇̃c∇̃c − 2k)(∇̃a∇̃a − 6k)(∇̃b∇̃b − 3k)

×
[
∇̃i[

1
2(Ḃj − Ëj) + Ω̇Ω−1(Bj − Ėj)] + ∇̃j[

1
2(Ḃi − Ëi) + Ω̇Ω−1(Bi − Ėi)]

]
= 0. (5.22)

5.9 Tensor sector

Thus finally from (5.19) we obtain

(∇̃c∇̃c − 2k)(∇̃a∇̃a − 6k)(∇̃b∇̃b − 3k)
[
−

..

Eij − 2kEij − 2Ω̇Ω−1Ėij + ∇̃a∇̃aEij

]
= 0. (5.23)

Thus with ten independent fluctuation equations, four for the scalars [(4.15), (5.5), (5.10), (5.11)], two two-component
equations for the vectors [(5.6), (5.14)], and one two-component equation for the tensor [(5.23)], we have succeeded in
decomposing the fluctuation equations for the components, with the various components obeying derivative equations that
are higher than second order.

18



5.10 The decoupled relations

The decoupled relations

∆00 = 6Ω̇2Ω−2(α− γ̇) + δρ̂Ω2 + 2Ω̇Ω−1∇̃a∇̃aγ = 0,

∇̃i∆0i = ∇̃a∇̃a
[
− 2Ω̇Ω−1(α− γ̇) + 2kγ + (−4Ω̇2Ω−3 + 2

..

ΩΩ−2 − 2kΩ−1)V̂
]
= 0,

3∇̃i∇̃j∆ij − ∇̃a∇̃a(γ̃ij∆ij) = 2∇̃2[∇̃2 + 3k](α + 2Ω̇Ω−1γ) = 0,

∇̃i∇̃j∆ij + kγ̃ij∆ij = [∇̃2 + 3k][2Ω̇2Ω−2(α− γ̇)− 2Ω̇Ω−1(α̇− γ̈)− 4Ω̈Ω−1(α− γ̇) + Ω2δp̂] = 0.

(∇̃k∇̃k − 2k)∆0i = (∇̃k∇̃k − 2k)
[
k(Bi − Ėi) +

1
2∇̃a∇̃a(Bi − Ėi) + (−4Ω̇2Ω−3 + 2

..

ΩΩ−2 − 2kΩ−1)Vi

]
= 0,

(∇̃a∇̃a − 2k)(∇̃b∇̃b + k)∇̃j∆ij = (∇̃a∇̃a − 2k)(∇̃b∇̃b + k)[∇̃c∇̃c + 2k][12(Ḃi − Ëi) + Ω̇Ω−1(Bi − Ėi)] = 0,

(∇̃c∇̃c − 2k)(∇̃a∇̃a − 6k)(∇̃b∇̃b − 3k)
[
−

..

Eij − 2kEij − 2Ω̇Ω−1Ėij + ∇̃a∇̃aEij

]
= 0 (5.24)

are exact without approximation. They are all in the form of derivative operators acting on the functions required of the
decomposition theorem.

Then with appropriate asymptotic boundary conditions we obtain

6Ω̇2Ω−2(α− γ̇) + δρ̂Ω2 + 2Ω̇Ω−1∇̃a∇̃aγ = 0,

−2Ω̇Ω−1(α− γ̇) + 2kγ + (−4Ω̇2Ω−3 + 2
..

ΩΩ−2 − 2kΩ−1)V̂ = 0,

α + 2Ω̇Ω−1γ = 0,

2Ω̇2Ω−2(α− γ̇)− 2Ω̇Ω−1(α̇− γ̈)− 4Ω̈Ω−1(α− γ̇) + Ω2δp̂ = 0.

k(Bi − Ėi) +
1
2∇̃a∇̃a(Bi − Ėi) + (−4Ω̇2Ω−3 + 2

..

ΩΩ−2 − 2kΩ−1)Vi = 0,
1
2(Ḃi − Ëi) + Ω̇Ω−1(Bi − Ėi) = 0,

−
..

Eij − 2kEij − 2Ω̇Ω−1Ėij + ∇̃a∇̃aEij = 0. (5.25)

These boundary conditions are not new conditions since we already required asymptotic convergence in
order to set up the SVT basis in (3.3) in the first place. Having now set up the formalism we look at some
solutions.
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6 Fluctuations Around de Sitter

For de Sitter the background fluid is a cosmological constant term Tµν = Λgµν. With a time-independent Hubble parameter
H and k = 0 the comoving time expansion radius is given by a(t) = eHt. Thus the conformal time τ = −e−Ht/H and
Ω(τ) = 1/Hτ . The decomposition theorem gives us

6
τ2 (α− γ̇)− 2

τ ∇̃a∇̃aγ = 0,
2
τ (α− γ̇) = 0,

α− 2
τ γ = 0,

2
τ2 (α− γ̇) + 2

τ (α̇− γ̈) + 8
τ2 (α− γ̇) = 0.

1
2(Bi − Ėi) = 0,

1
2(Ḃi − Ëi)− 1

τ (Bi − Ėi) = 0,

−
..

Eij +
2

τ
Ėij + ∇̃a∇̃aEij = 0. (6.1)

In this solution we have

α = 0, γ = 0, Ḃi − Ëi = 0. (6.2)

Thus the only nontrivial modes are the tensor modes. And in a plane wave mode with momentum k, Eij is given as

Eij = ϵij(k)τ
2[a1(k)j1(kτ) + b1(k)y1(kτ)]e

ik·x, (6.3)

where k · k = k2, j1 and y1 are spherical Bessel functions, and a1(k) and b1(k) are spacetime independent constants. For
Eij to obey the transverse and traceless conditions δijEij = 0, ∇̃jEij = 0 the polarization tensor ϵij(k) must obey δijϵij = 0,
kjϵij(k) = 0. Then, by taking a family of separation constants we can form a transverse-traceless wave packet

Eij =
∑
k

ϵij(k)τ
2[a1(k)j1(kτ) + b1(k)y1(kτ)]e

ik·x

=
∑
k

ϵij(k)

[
a1(k)

(
sin(kτ)

k2
− τ cos(kτ)

k

)
+ b1(k)

(
cos(kτ)

k2
+
τ sin(kτ)

k

)]
, (6.4)

and can choose the a1(k) and b1(k) coefficients to make the packet be as well-behaved at spatial infinity as desired. Finally,
since the full fluctuation is given not by Eij but by 2Eij/H

2τ 2, then with τ = −e−Ht/H, through the cos(kτ)/k2 term we
find that at large comoving time Eij/τ

2 behaves as e2Ht, viz. the standard de Sitter inflation fluctuation exponential growth.
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7 Conformal Gravity

Conformal gravity is a candidate alternate metric gravitational theory that has not only general coordinate invariance but
also local conformal invariance, i.e., invariance under gµν(x) → e2α(x)gµν(x) for arbitrary spacetime dependent α(x). Under
this transformation the conformal Weyl tensor, defined as

Cλµνκ = Rλµνκ −
1

2
(gλνRµκ − gλκRµν − gµνRλκ + gµκRλν) +

1

6
Rα

α (gλνgµκ − gλκgµν) (7.1)

transforms as Cλ
µνκ → Cλ

µνκ with all derivatives of α(x) dropping out. In consequence the action

IW = −αg

∫
d4x (−g)1/2CλµνκC

λµνκ ≡ −2αg

∫
d4x (−g)1/2

[
RµκR

µκ − 1

3
(Rα

α)
2

]
(7.2)

is locally conformal invariant. Not only that, it is the unique action that possesses this invariance. The attraction of
this theory is that it forbids the presence of any cosmological constant term at the level of the Lagrangian. With the
gravitational coupling constant αg being dimensionless, quantum-mechanically the theory is power counting renormalizable.
It is also unitary, and thus provides a consistent quantum gravity theory in four spacetime dimensions. No strings, no extra
dimensions, no supersymmetry.

With the Weyl action IW given in (7.2) being a fourth-order derivative function of the metric, functional variation with
respect to the metric gµν(x) generates fourth-order derivative gravitational equations of motion of the form

− 2

(−g)1/2
δIW
δgµν

= 4αgW
µν = 4αg

[
2∇κ∇λC

µλνκ −RκλC
µλνκ

]
= 4αg

[
W µν

(2) −
1

3
W µν

(1)

]
= T µν, (7.3)

where the functions W µν
(1) and W

µν
(2) (respectively associated with the (Rα

α)
2 and RµκR

µκ terms in (7.2)) are given by

W µν
(1) = 2gµν∇β∇βRα

α − 2∇ν∇µRα
α − 2Rα

αR
µν +

1

2
gµν(Rα

α)
2,

W µν
(2) =

1

2
gµν∇β∇βRα

α +∇β∇βRµν −∇β∇νRµβ −∇β∇µRνβ − 2RµβRν
β +

1

2
gµνRαβR

αβ, (7.4)

and where T µν is the conformal invariant, and thus traceless, energy-momentum tensor associated with a conformal matter
source. Here W µν = W µν

(2) − (1/3)W µν
(1) is known as the Bach tensor. In addition, the conformal Weyl tensor vanishes in

geometries that are conformal to flat, this precisely being the case for the Robertson-Walker and de Sitter geometries that
are of relevance to cosmology. Thus with the cosmological principle it follows that Tµν = 0, so that it allows for the creation
of a universe from nothing, provided of course that Tµν vanishes nontrivially, something we now show to be the case.
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8 The Conformal Gravity Background Cosmology

Since particles can only acquire mass in a conformal invariant theory by symmetry breaking, we introduce a scalar field
S(x) for this purpose. We take the matter sector fields to be represented by fermions, with the conformally invariant matter
sector action then being of the form

IM = −
∫
d4x(−g)1/2

[
1

2
∇µS∇µS − 1

12
S2Rµ

µ + λS4 + iψ̄γcV µ
c (x)[∂µ + Γµ(x)]ψ − hSψ̄ψ

]
, (8.1)

where h and λ are dimensionless coupling constants and the V µ
c (x) are vierbeins. As such, the IM action is the most general

curved space matter action for the ψ(x) and S(x) fields that is invariant under both general coordinate transformations and
the local conformal transformation S(x) → e−α(x)S(x), ψ(x) → e−3α(x)/2ψ(x), ψ̄(x) → e−3α(x)/2ψ̄(x), V a

µ (x) → eα(x)V a
µ (x),

gµν(x) → e2α(x)gµν(x). Variation of this action with respect to ψ(x) and S(x) yields the equations of motion

iγcV µ
c (x)[∂µ + Γµ(x)]ψ − hSψ = 0, ∇µ∇µS +

1

6
SRµ

µ − 4λS3 + hψ̄ψ = 0. (8.2)

We take the fermions to form a general background matter sector perfect fluid (labelled by m), and thus when the scalar
field acquires a constant symmetry breaking vacuum expectation value S0 the total background matter sector T µν is then
of the form

T µν =
1

c
[(ρm + pm)U

µU ν + pmg
µν]− 1

6
S2
0

(
Rµν − 1

2
gµνRα

α

)
− gµνλS4

0 . (8.3)
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8.1 The Background Equations

Since Wµν is zero in RW geometries, then so is Tµν. Thus it follows that

1

6
S2
0

(
Rµν − 1

2
gµνRα

α

)
=

1

c
[(ρm + pm)U

µU ν + pmg
µν]− gµνλS4

0 . (8.4)

We thus recognize the conformal cosmological evolution equation given in (8.4) as being of the form as none other than the
cosmological evolution equation of the standard theory, viz. (on setting Λ = λS4

0)

− c3

8πGN

(
Rµν − 1

2
gµνRα

α

)
=

1

c
[(ρm + pm)U

µU ν + pmg
µν]− gµνΛ, (8.5)

save only for the fact that the standard G has been replaced by an effective, dynamically induced one given by

Geff = − 3c3

4πS2
0

, (8.6)

viz. by an effective gravitational coupling that is expressly negative. Conformal cosmology is thus controlled by an effective
gravitational coupling that is repulsive rather than attractive, and which becomes smaller the larger S0 might be. With Geff

being negative, cosmological gravity is repulsive, and thus naturally leads to cosmic acceleration.
Despite the fact that the global cosmological Geff is negative, local inhomogeneous gravity associated with a static source

is not controlled by the global Geff associated with a homogeneous comoving geometry and a vanishing Weyl tensor but by an
induced local attractive G that is associated with an inhomogeneous geometry and a non-vanishing Weyl tensor. The static
limit consists of both a 1/r potential and a linear r potential. Because the potential grows with r one cannot ignore material
outside of any galaxy. Moreover the material furthest away has the biggest impact and is thus of cosmological strength.
And not only that it leads to an additional universal linear potential γ0r where γ0 is fixed by the spatial 3-curvature of the
Universe according to γ0 = (−4k)1/2, a relation that requires that k expressly be negative. This then enables conformal
gravity to fit galactic rotation curves without any dark matter and determine that (−4k)1/2 = 3.06× 10−30cm−1. Thus the
missing mass is the rest of the visible mass in the Universe, and it has been hiding in plain sight all along.
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FIG. 1: Fitting to the rotational velocities (in km sec−1) of the THINGS 18 galaxy sample
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To be able to see how central the negative sign of Geff is to cosmic acceleration we define

Ω̄M(t) =
8πGeffρm(t)

3c2H2(t)
, Ω̄Λ(t) =

8πGeffΛ

3cH2(t)
, Ω̄k(t) = − kc2

ȧ2(t)
, (8.7)

where H = ȧ/a. And on introducing the deceleration parameter q = −aä/ȧ2, from (8.4) we obtain

ȧ2(t) + kc2 = ȧ2(t)
(
Ω̄M(t) + Ω̄Λ(t)

)
, Ω̄M(t) + Ω̄Λ(t) + Ω̄k(t) = 1, q(t) =

1

2

(
1 +

3pm
ρm

)
Ω̄M(t)− Ω̄Λ(t) (8.8)

as the background evolution equations of conformal cosmology.
Given (8.8), and without needing to specify any matter sector equation of state and without even needing to solve the

theory explicitly at all, we are still able to constrain q(t). Specifically, we note that since Λ represents the free energy that
is released in the phase transition that generated S0 in the first place, Λ (and thus the scalar field coupling constant λ) is
necessarily negative. Then with Geff also being negative the quantity Ω̄Λ(t) is positive, i.e., the conformal theory needs a
negative Geff in order to obtain a positive Ω̄Λ(t). (In contrast, the standard model rationale for positive ΩΛ = 8πGNΛ/3c

2H2

is that since the Newtonian G is positive Λ has to be taken to be positive too.) Since ρm and pm are associated with ordinary
matter they are both positive. Thus Ω̄M(t) is negative and Ω̄Λ(t) is positive. Thus since Geff is negative it follows that q(t) is
automatically negative, being so in every epoch. Consequently, conformal cosmology is automatically accelerating
in every cosmological epoch without any adjustment or fine tuning of parameters ever being needed.

If we take Λ to be much bigger than ρm the evolution equations admit of an exact comoving frame solution of the form

a(t) = (−k/σ)1/2 sinh(σ1/2ct), (8.9)

where σ = −2λS2
0 = 8πGeffΛ/3c is positive. With such an a(t) we obtain

Ω̄Λ(t) = tanh2(σ1/2ct), Ω̄k(t) = sech2(σ1/2ct), q(t) = − tanh2(σ1/2ct), (8.10)

As we see, no matter how big Λ might be, Ω̄Λ(t) has to lie between zero and one, i.e., because k is negative Ω̄Λ(t) approaches
one from below. The cosmological constant problem is thus solved not by making Λ small but by making the amount by
which it gravitates small (i.e., small Geff and large S0). Similarly, q(t) has to lie between zero and minus one, with measured
value q0 = −0.37.

The current value of the Hubble parameter is given by H(t0) = σ1/2c coth(σ1/2ct0). With q0 = −0.37 we obtain σ1/2ct0 =
0.71, and t0 = 1.16/H(t0) = 5 × 1017 sec. Also σ1/2 = 0.50 × 10−28cm−1. With (−k)1/2 = 1.53 × 10−30 cm−1 we obtain
a(t0) = 2.36× 10−2. As we will see, this number is small enough to enable us to reliably do perturbation theory.
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The lluminosity distance redshift relation of the form

dL = − c

H(t0)

(1 + z)2

q0

[
1−

(
1 + q0 −

q0
(1 + z)2

)1/2
]
, (8.11)

where q0 = q(t0) and H(t0) are the current era values of the deceleration parameter and the Hubble parameter.
Fitting the type 1A supernovae accelerating universe data with (8.11) gives a fit that is comparable in quality with that

of the standard model ΩM(t0) = 0.3, ΩΛ(t0) = 0.7 dark matter dark energy paradigm. In the conformal gravity fit q0 is
fitted to the value −0.37, i.e., quite non-trivially found to be right in the allowed −1 ≤ q0 ≤ 0 range, with Ω̄Λ(t0) = 0.37,
Ω̄k(t0) = 0.63. Since Ω̄M(t0) is negligible no dark matter is needed, and since q0 and Ω̄Λ(t0) = −q0 fall right in the allowed
region, no fine tuning is needed either. The ability of the conformal gravity theory to fit the accelerating universe data thus
confirms that in conformal cosmology k is indeed negative. So now let us see what the fluctuations look like.
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Figure 3: Hubble plot expectations for q0 = −0.37 (highest curve) and q0 = 0 (middle curve) conformal gravity and for ΩM(t0) = 0.3,
ΩΛ(t0) = 0.7 standard gravity (lowest curve).
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9 Conformal Gravity Fluctuations

Taking the line element to be

ds2 = −(gµν + hµν)dx
µdxν = Ω2(τ)

[
dτ 2 − dr2

1− kr2
− r2dθ2 − r2 sin2 θdϕ2

]
+ Ω2(τ)

[
2ϕdτ 2 − 2(∇̃iB +Bi)dτdx

i − [−2ψγ̃ij + 2∇̃i∇̃jE + ∇̃iEj + ∇̃jEi + 2Eij]dx
idxj

]
, (9.1)

we need to solve 4αgδWµν = δTµν about a background in which both Wµν and Tµν vanish. δTµν is the same ∆µν that we
gave in (4.15) to (4.17) but with the repulsive Geff replacing the attractive GN .

It is convenient to define

η = −24αg

S2
0

, R = −6(ρm + cΛ)

S2
0

, P = −6(pm − cΛ)

S2
0

, δR = −6δρm
S2
0

, δP = −6δpm
S2
0

. (9.2)

The background and fluctuation equations then take the form

ηWµν = Gµν +
1

c
[(R + P )UµUν + Pgµν] , (9.3)

ηδWµν = δGµν +
1

c
[(δR + δP )UµUν + δPgµν + (R + P )(δUµUν + UµδUν) + Phµν] = ∆µν, (9.4)

The fluctuation δWµν in the Bach tensor Wµν is of the form

δW00 = − 2

3Ω2
(∇̃a∇̃a + 3k)∇̃b∇̃bα,

δW0i = − 2

3Ω2
∇̃i(∇̃a∇̃a + 3k)α̇ +

1

2Ω2
(∇̃b∇̃b − ∂2τ − 2k)(∇̃c∇̃c + 2k)(Bi − Ėi),

δWij = − 1

3Ω2

[
γ̃ij∇̃a∇̃a(∇̃b∇̃b + 2k − ∂2τ )α− ∇̃i∇̃j(∇̃a∇̃a − 3∂2τ )α

]
+

1

2Ω2

[
∇̃i(∇̃a∇̃a − 2k − ∂2τ )(Ḃj − Ëj) + ∇̃j(∇̃a∇̃a − 2k − ∂2τ )(Ḃi − Ëi)

]
+

1

Ω2

[
(∇̃b∇̃b − ∂2τ − 2k)2 + 4k∂2τ

]
Eij. (9.5)
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With

Ω2R = 3k + 3Ω̇2Ω−2, Ω2P = −k + Ω̇2Ω−2 − 2Ω̈Ω−1, Ṙ + 3Ω̇(R + P )Ω−1 = 0,

α = ϕ+ ψ + Ḃ − Ë, γ = −Ω̇−1Ωψ +B − Ė, V̂ = V − Ω2Ω̇−1ψ,

δR̂ = δR− 12Ω̇2ψΩ−4 + 6
..

ΩψΩ−3 − 6kψΩ−2 = δR + Ω̇−1ṘψΩ = δR− 3(R + P )ψ,

δP̂ = δP − 4Ω̇2ψΩ−4 + 8
..

ΩψΩ−3 + 2kψΩ−2 − 2
...

ΩΩ̇−1ψΩ−2 = δP + Ω̇−1ṖψΩ, (9.6)

the full and exact conformal cosmological fluctuation equations are of the form

ηδW00 = − 2η

3Ω2
(∇̃a∇̃a + 3k)∇̃b∇̃bα

= ∆00 = 6Ω̇2Ω−2(α− γ̇) + δR̂Ω2 + 2Ω̇Ω−1∇̃a∇̃aγ, (9.7)

ηδW0i = − 2η

3Ω2
∇̃i(∇̃a∇̃a + 3k)α̇ +

η

2Ω2
(∇̃b∇̃b − ∂2τ − 2k)(∇̃c∇̃c + 2k)(Bi − Ėi)

= ∆0i = −2Ω̇Ω−1∇̃i(α− γ̇) + 2k∇̃iγ + (−4Ω̇2Ω−3 + 2
..

ΩΩ−2 − 2kΩ−1)∇̃iV̂

+k(Bi − Ėi) +
1

2
∇̃a∇̃a(Bi − Ėi) + (−4Ω̇2Ω−3 + 2

..

ΩΩ−2 − 2kΩ−1)Vi, (9.8)

ηδWij = − η

3Ω2

[
γ̃ij∇̃a∇̃a(∇̃b∇̃b + 2k − ∂2τ )α− ∇̃i∇̃j(∇̃a∇̃a − 3∂2τ )α

]
+

η

2Ω2

[
∇̃i(∇̃a∇̃a − 2k − ∂2τ )(Ḃj − Ëj) + ∇̃j(∇̃a∇̃a − 2k − ∂2τ )(Ḃi − Ëi)

]
+
η

Ω2

[
(∇̃b∇̃b − ∂2τ − 2k)2 + 4k∂2τ

]
Eij

= ∆ij = γ̃ij
[
2Ω̇2Ω−2(α− γ̇)− 2Ω̇Ω−1(α̇− γ̈)− 4Ω̈Ω−1(α− γ̇) + Ω2δP̂ − ∇̃a∇̃a(α + 2Ω̇Ω−1γ)

]
+∇̃i∇̃j(α + 2Ω̇Ω−1γ) + Ω̇Ω−1∇̃i(Bj − Ėj) +

1

2
∇̃i(Ḃj − Ëj) + Ω̇Ω−1∇̃j(Bi − Ėi) +

1

2
∇̃j(Ḃi − Ëi)

−
..

Eij − 2kEij − 2ĖijΩ̇Ω
−1 + ∇̃a∇̃aEij. (9.9)
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9.1 The Decomposition Theorem

The Decomposition Theorem also holds in conforrnal gravity and yields

− 2η

3Ω2
(∇̃a∇̃a + 3k)∇̃b∇̃bα = 6Ω̇2Ω−2(α− γ̇) + δR̂Ω2 + 2Ω̇Ω−1∇̃a∇̃aγ, (9.10)

1

2
(∇̃c∇̃c + 2k)

η

Ω2
(∇̃b∇̃b − ∂2τ − 2k)(Bi − Ėi)

=
1

2
(∇̃c∇̃c + 2k)(Bi − Ėi) + (−4Ω̇2Ω−3 + 2

..

ΩΩ−2 − 2kΩ−1)Vi, (9.11)

η

Ω2

[
(∇̃b∇̃b − ∂2τ − 2k)2 + 4k∂2τ

]
Eij = −

..

Eij − 2kEij − 2ĖijΩ̇Ω
−1 + ∇̃a∇̃aEij. (9.12)

− η

3Ω2
∇̃a∇̃a(∇̃b∇̃b + 2k − ∂2τ )α

= 2Ω̇2Ω−2(α− γ̇)− 2Ω̇Ω−1(α̇− γ̈)− 4Ω̈Ω−1(α− γ̇) + Ω2δP̂ − ∇̃a∇̃a(α + 2Ω̇Ω−1γ), (9.13)

η

3Ω2
(∇̃a∇̃a − 3∂2τ )α = α + 2Ω̇Ω−1γ, (9.14)

− 2η

3Ω2
(∇̃a∇̃a + 3k)α̇ = −2Ω̇Ω−1(α− γ̇) + 2kγ + (−4Ω̇2Ω−3 + 2

..

ΩΩ−2 − 2kΩ−1)V̂ , (9.15)

η

2Ω2
(∇̃a∇̃a − 2k − ∂2τ )(Ḃi − Ëi) = Ω̇Ω−1(Bi − Ėi) +

1

2
(Ḃi − Ëi), (9.16)
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Following some algebra we can manipulate these equations to obtain

d

dp

(
−3Ω̇Ω−2XV̂ + Ω2δR̂

)
+
(
∇̃b∇̃b + 3k − 3Ω̇2Ω−2

)
[Ω−1XV̂ ] + Ω̇ΩδR̂ = X(∇b∇b + 3k)

[
ηΩ−2α̇ + γ

]
,

−
(
d

dp
+ 2Ω̇Ω−1

)
(Ω−1XV̂ )− Ω2δP̂ = X(α− γ̇),

− 3Ω̇Ω−2XV̂ + Ω2δR̂ = (∇̃b∇̃b + 3k)
[ η
Ω2

(α̈− 2Ω̇Ω−1α̇− ∇̃b∇̃bα) + α
]
,

γ =
Ω

2Ω̇

[ η

3Ω2
(∇̃a∇̃a − 3∂2τ )α− α

]
. (9.17)

in the scalar sector, where X = 4Ω̇2Ω−2 − 2Ω̈Ω−1 + 2kc2 = −6Ω2c(ρm + pm)/S
2
0 .

9.2 The Solution

So far everything is exact. We now specialize to the case where Λ is much bigger than ρm. Then in comoving time we have
a(t) = (−k/σ)1/2 sinh(σ1/2ct), so that in conformal time we have

Ω(τ) =
S0(k/2Λ)

1/2

sinh(−(−k)1/2cτ)
= − (−k/σ)1/2

sinh((−k)1/2cτ)
. (9.18)

With this Ω(τ) we find that X = 0. On dropping the matter sector δR̂, with asymptotic boundedness we then find that the
equations for α and γ simplify to

η

Ω2
(α̈− 2Ω̇Ω−1α̇− ∇̃b∇̃bα) + α = 0,

γ =
Ω

2Ω̇

[ η

3Ω2
(∇̃a∇̃a − 3∂2τ )α− α

]
. (9.19)
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9.3 Separating the Variables

We introduce a dimensionless conformal time variable ρ = (−k)1/2cτ , and set r = (−k)−1/2 sinhχ where χ is dimensionless.
We set α = α(ρ)Sℓ(χ)Y

m
ℓ (θ, ϕ) and introduce a separation constant (−k)(ν2 + 1). Thus we obtain(

∇̃a∇̃a + (−k)(ν2 + 1)
)
Sℓ(χ)Y

m
ℓ (θ, ϕ) = 0, (9.20)

[
d2

dχ2
+ 2

coshχ

sinhχ

d

dχ
− ℓ(ℓ+ 1)

sinh2 χ
+ ν2 + 1

]
Sℓ(χ) = 0, (9.21)

(
d2

dρ2
+ 2

cosh ρ

sinh ρ

d

dρ
− K(K + 1)

sinh2 ρ
+ ν2 + 1

)
α(ρ) = 0, (9.22)

where K = −1/2± (1/4− 1/ση)1/2. Here ℓ is integer but K is not.

These are standard associated Legendre function equations, with solutions

Ŝℓ =
(−1)ℓ+1

(2π)1/2
πν2(ν2 + 12)....(ν2 + ℓ2)

P
−1/2−ℓ
−1/2+iν(coshχ)

sinh1/2 χ
= sinhℓ χ

(
1

sinhχ

d

dχ

)ℓ+1

cos(νχ), (9.23)

where ν is a continuous real variable that lies between zero and infinity, and

α(ρ) =
1

sinh1/2 ρ
P

−1/2−K
−1/2+iν (cosh ρ) =

1

sinh1/2 ρ

1

Γ(3/2 +K)
coth−1/2−K(ρ/2)F (1/2− iν, 1/2 + iν; 3/2 +K;− sinh2(ρ/2)),

1

3K(K + 1)
sinh2 ρ(ν2 + 1 + 3∂2ρ)α(ρ)− α(ρ) = −2

cosh ρ

sinh ρ
(−k)1/2γ(ρ) (9.24)

in conformal time. With ξ = σ1/2t in comoving time the solutions are

α(ξ) = sinh ξP iν
K (cosh ξ) = sinh ξ

1

Γ(1− iν)
cothiν(ξ/2)F (−K,K + 1; 1− iν;− sinh2(ξ/2)),

2γ(ξ)(−k)1/2 sinh ξ cosh ξ = 1

K(K + 1)

[
K(K + 1) sinh2 ξ − ν2 + 1 + 2 sinh2 ξ − 2(K + 1)(1 + sinh2 ξ)

]
P iν
K (cosh ξ)

+
K(K + 1)

3
(ν2 + 1)P iν

K (cosh ξ) +
2

K(K + 1)
cosh ξ(K + iν + 1)P iν

K+1(cosh ξ)− sinh2 ξP iν
K (cosh ξ). (9.25)
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10 Growth of Structure

We had noted that currently a(t0) = 2.36 × 10−2. With a current temperature T0 = 3◦K and an adiabatic expansion in
which a(t) behaves as 1/T , at any earlier time we have a(t) = a(t0)T0/T . At last scattering, at which the CMB is produced,
the temperature TL is order 3000◦K. So a(tL) = 2.36× 10−5. Now

a(t) = (−k/σ)1/2 sinh(σ1/2ct) = Ω(ρ) = −(−k/σ)1/2

sinh ρ
. (10.1)

Thus in the early universe ρ is large (and negative). For large ρ the associated Legendre functions behave as

P
−1/2−K
−1/2+iν (cosh ρ) →

1

cosh1/2 ρ

[
Γ(iν)eiνρ

(2π)1/2Γ(iν +K + 1)
+

Γ(−iν)e−iνρ

(2π)1/2Γ(−iν +K + 1)

]
. (10.2)

Now radial modes on the light cone obey dρ2 − dχ2 = 0. Thus light rays obey ρ = −χ. Thus large ρ means large χ. With
the conformal time behavior being of the form α(ρ) = P

−1/2−K
−1/2+iν (cosh ρ)/ sinh

1/2 ρ, and with the χ behavior being of the form

α(χ) = P
−1/2−ℓ
−1/2+iν(coshχ)/ sinh

1/2 χ, in the early universe light ray fluctuations behave as

α(ρ, χ) ∼ 1

sinh ρ sinhχ
=

1

sinh2 ρ
∼ Ω2(ρ) ∼ 1

T 2
(10.3)

Thus fluctuations grow as

α(ρ2, χ2) =
T 2
1

T 2
2

α(ρ1, χ1). (10.4)

Thus in going from nucleosynthesis to last scattering the amplitude grows by a factor of (109/103)2 = 1012.

In going from nucleosynthesis to today the amplitude grows by a factor of (109/3)2 = 1017.

In going from 1023◦K to today the amplitude grows by a factor of (1023/3)2 = 1045.

In a standard gravity de Sitter geometry the expansion radius grows as a(t) = eHt and we saw that fluctuation grows as
e2Ht, i.e. as a2(t) ∼ 1/T 2. Thus conformal gravity gives the same growth rate as inflation. However, in conformal gravity
at small t we have a(t) → (−k)1/2ct. Thus because a(t0) is small, at last scattering and earlier the contribution of Λ is
negligible and the conformal gravity Universe is negative curvature dominated.

THUS WE CAN REPLACE STANDARD GRAVITY INFLATION BY NEGATIVE CURVATURE CON-
FORMAL GRAVITY.
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