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We discuss the general structure of cosmological perturbation theory. We discuss gauge invariance and the decomposition
theorem. We provide some solvable models in both Einstein gravity and conformal gravity, and in conformal gravity show
how quickly fluctuations can build up.
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1 The Cosmological Background

Starting point: the cosmological principle: all points are equivalent

Isotropy: Universe looks same in all directions. Homogeneity: no place is
special

Possibilities: An infinite plane, a closed spherical surface, an open hyper-
boloid

Geometrically: a maximally 3-symmetric space of constant 3-curvature £k,
with £ =0, k>0o0or £ <0

Universe is expanding with expansion radius «(¢) and on largest scales obeys
the cosmological principle

With (2,7, k) = (r,0,¢) and 3-metric ;; gives Robertson-Walker line element:
dr?
1 — kr?

and 3-dimensional spatial Riemann tensor on every comoving time slice of
the form

ds* = Adt* — a*(t) —r?df* — r?sin® 0dg° | = dt* — a*(t)7;da'dr’  (1.1)

~

Rijre = klYiryie — Yirie)- (1.2)

So how good is the cosmological principle?



1.1 Hubble Flow

Hubble identified a systematic behavior in galaxies: they were all redshifted with respect to us, i.e., moving
away from us, and had velocities of the form v = HD, where D is the distance from us and H is a constant.

Rationale: No point is special. Consider three equally spaced points A, B, C on a straight line. Let B have a
velocity v with respect to A. Let C have a velocity v with respect to B. Then C has a velocity 2v with respect
to A, and is twice as far from A as Bis. Thusv = HD.

A B C
A VBA = VCB =V, VoA = 2V (1.3)

Hubble plot (from Type 1A superernova data) as log plot with slope H = 75 Km/sec/Mps, i.e. H ™! = 4x 10!
seconds, a first estimate of the age of the Universe.
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1.2 Cosmic Microwave Background (CMB)

Expect and find within small errors CMB to be uniform in every direction, and have the form of a blackbody

with energy density p = w2k5T*/15¢R? and pressure p = p/3, to give a current Universe temperature of order
K.
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F1G. 2.—Preliminary spectrum of the cosmic microwave background from
the FIRAS instrument at the north Galactic pole, compared to a blackbody.
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However on smaller scales (less than 200 or so Megaparsec) we see departures from homogeneity and isotropy,
with temperature fluctuations in the CMB being of oder AT/T = 10~°. Could these departures be described
by a small perturbation to uniformity. So need to develop a theory of cosmological perturbations.

Figure 1: The variation in temperature is of order 107°. Small departure from uniformly expanding Hubble flow.
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Figure 2: 30 percent dark matter 70 percent dark energy fit to angular momentum decomposition of the CMB fluctuations



2 Cosmological Perturbation Theory

On introducing the conformal time 7 and writing the expansion radius as (1) = a(t) according to

dt
. /@ Q(r) = alt), (2.1)

we take the background plus fluctuating line element to be of the scalar, vector, tensor (SVT) form

d 2
ds* = — (g + hy)da"dz” = Q*(1) [d72 ~7 Tk 5 — r2d6* — r*sin’ Od¢*
— RT
+ Q2(7) |2¢d7® — 2(V;B + B;)drda' — [~2¢7;; + 2V, V;E + V,E; + V,;E; + 2Eij]dxidxf} , (2.2)

where V; = 9/02" and V' = 49V (with Latin indices) are defined with respect to the background 3-space metric 7;;. With
FIV Vi = 79[0;Vi — THVAl (2.3)

for any three-vector V; in a 3-space with 3-space connection f‘fj = %&M[

7/ViBi =0, 3'V;E;i =0, Ey=E; +"ViE;=0, 37E;=0. (2:4)

O0Ye; + 076 — Orij], the elements of (2.2) obey

As written, (2.2) contains ten elements, whose transformations are defined with respect to the background spatial sector
as four 3-dimensional scalars (¢, B, ¥, E) each with one degree of freedom, two transverse 3-dimensional vectors (B;, E;)
each with two independent degrees of freedom, and one symmetric 3-dimensional transverse-traceless tensor (£;;) with two
degrees of freedom, so 1+1+1+4+1+2+ 2+ 4 = 10. Since this a 3-dimensional SVT formalism we will need to
establish that it leads to fluctuation equations that are not 3-dimensionally but 4-dimensionally covariant.

To set up this SVT basis requires some specific asymptotic spatial boundary conditions. Thus on introducing the Green’s
function D that obeys V,;V:D®(z,2") = 771/26%(x — 2') (where 7 is the determinant of 7;;), we for instance obtain

W'=V'B+B, Vh"=V,V'B, B(z)= / &5 2 DOz, 2')Vih(2'),
Bi(x) = " — @i/dgx':y’lﬂD(?’)(x, :U')@;-hjo(a:'), (2.5)

and thus require that the integral exist. As we see, the relation between h% and the transverse B’ and longitudinal VB is
nonlocal.



3 Relating the SVT and h,, Fluctuation Bases

For simplicity we take the background metric to be —Q?(7)n,, (i.e., k = 0), and set h,, = Q*(7) f.u, to obtain

ds? = —[Q(T)Nap + hasldz®dz”
= (1) [Nap + fag]da:adxﬁ = Q%(7) [d7'2 — 0ydx'da’ — foodr? — 2 foidrdr’ — fijda:idxj} .

Identifying terms gives

20 = —foo, Bi+ VB = Joi,  Jij = —2¢d;; + Q@i@jE + @Z'Ej + ﬁjEz’ + 2E;;,
0Ufi; = —6+2V,V'E,  Vif; = -2V +2V,V,V'E + V,.V*E,
VIS, = 20V 2V, VY, VB = S VRVE LR S = 49, + 0 ),
so that
20 = — foo, B = /dByD(g)(X — )V foi B; = foi — VB,
v = 5 [ DO - )TV - 1

- 1
E — / ByDB) (x — y) E / ?2DB)(y — 2)VEV. fr — 15’% fkg] ,

B = [ @D )98- 91 [ @200y - 2T,
2F;,; = fij + 2¢523 — Q@ZﬁjE — 62Ej — 6J‘Ei,

(3.1)

(3.2)

(3.3)

with B;, E; and E;; then obeying (2.4). (In (3.3) in a symbol such as @?’J for instance the y indicates that the derivative is

taken with respect to the y coordinate.)

As we see, we need to go to fairly high derivatives in order to be able to express each of the SVT components entirely in

terms of combinations of components of the A, .



4 Gauge Structure of the SVT Basis

In order to explore the gauge structure of the SVT basis we implement an infinitesimal 4-dimensional coordinate transfor-
mation z, = x, + €,(z). It is convenient to write €, in the scalar, vector form, viz.

¢ =)0,  fo=-T, fi=L+V,L §V;L;=V'L;=0. (4.1)

With a general coordinate transformation being of the form g = (0z"/0x7)(0z"/0x7)g"", to lowest order in ¢, the line
element ds® and the fluctuations h,, and f,, = Q ?(x)h,, transform into

ds® = —QQ(T) Mo + faﬁ]dfo‘dfﬂ
= OX(7) |(1 4 24)d7 — 2(ViB + B;)d7dz' — [(1 — 21)6;; + 2V, V,;E + V,E; + V,E; + QEZ-j]d:Eidfj} :
i_zW = hy — 0ve, — Oue, + 2F2,/6,\
= hy — Ovey — Oue, + Q1) €0, + €,0, — 6)\77,111/77/\0.80]92(7_)7
]iw = S — az/fu - 3ufu - 9_2(7-)]()\77#1177)\06(7.92(7)7
foo = foo+2T +Q7*(7)[T + (L;i + V;L)679;]Q0°(),
for = foi+0T — L — VL,
fii = fij —0{Lj + VL) = 8;(L; + ViL) — 6;Q72(7)[T0 + (L; + V;L)5"9;]Q%(7), (4.2)

where the dot denotes derivative with respect to 7. Following some algebra we obtain

b = ¢—T—QOT, B=B+T-1L, Y =1+ Q7OT, E=FE—-1L,

Bi = Bz — Li, Ez = Ez — Li; Eij = Eij; (43)
and gauge invariant combinations take the form

¢+ +B-E=¢+y+B—E  ¢-QQUB-E)=v¢-Q QB - L),

B;— E; = B, — E;, Ei; = Ejj, (4.4)

Thus 1+ 1+2+42 =6 =10 — 4 just as required.



4.1 Fluctuations Around Flat

As a check, we note that for fluctuations around flat, i.e., Q =1, ds?> = (=N — hy)daztdx”, the gauge invariants are

o+B—FE, W, Bi—E=B—-E, FE;=E; (4.5)

and since in a flat background there is no 7}, (and thus no 67}, ), then from the Einstein equations —(1/87Gn)G = T},

where the Einstein tensor is given in terms of the Ricci tensor R, and the Ricci scalar R by G, = R, — (1/2)g,, R, the
perturbed Einstein tensor G, is gauge invariant on its own, and evaluates to

0Goy = —20"V,Va1b,
0Gy = =2V + 16V V. (B, — ),
0Gij = =260 — 66;; ViV o(¢+ B — E) + 66, ViVt + V,;Vi(¢ + B — E) — V,; Vi
+ V(B — Ej) + V(B — E) — Eij + 6V V By,
g"6G,, = —0Go + 096G = 460V, b — 6 — 20°°V, V(b + B — E), (4.6)

to thus depend on none other than the combinations given in (4.5). It is thus 4-dimensionally gauge invariant. Thus the
SVT basis leads to a fully 4-dimensionally covariant fluctuation equation even though the SVT basis itself
is only 3-dimensional.

4.2 General Case

When ) depends on 7 and we take k& to be nonzero [background line element ds* = Q*(7)(dr? — 7;;dz'dz’)], the general
gauge invariants are

Oé:Qb—l‘lb—{—B—E, ’}/:QQ_lw—B—f—E, Bz_Eza Ezg (47)

Interestingly, they have no explicit dependence on k even though it is nonzero.



4.3 Perturbed Energy-Momentum Tensor
We take the background T}, to be of the perfect fluid form

T,uu = (p + p)U,uUz/ + Puv, (48)
with fluctuation
5T/w = (5P + 5P)UuUu + 5pg/w + (P + p)(éUqu + UM5UV) + phuv- (4-9)

Here ¢"U,U, = —1, U’ = Q !(7), Uy = —Q(7), U" = 0, U; = 0 for the background, while for the fluctuation we have

5gOOU0U0 + QQOOU()(SUO =0, (410)
1.e.
1
Uy = —5(900)_1(—g009005900)U0 = —Q(7)o. (4.11)

Thus 0U; is not an independent degree of freedom. For the 3-vector we set oU; = V; + @Z-V, where now A% @j‘/l' =
Y910, Vi — fZVk] = 0. As constructed, in general we have 11 fluctuation variables, the six from the metric together with the
three 6U;, and dp and dp. But we only have ten fluctuation equations —(1/87Gn)0G,,, = 01),. Thus to solve the theory
when there is both a dp and a dp we will need some constraint between dp and dp.

Proceeding as with the fluctuating metric, we find that for fluctuations around a background ds?* = Q?(7)(dr*—7,;;dx'dz?),
the fluctuating 07, gauge invariants are

V=V,  Vi=V, 6 = sp-3(p+pl, 6 =3p+QQ p. (4.12)

Again there is no explicit dependence on k.



4.4 The Fluctuation Equations

For the background Einstein equations we have

Goo = —3k—30%Q72 Gu=0, Giy=7 [k 0202 zfml} ,
Goo + 87GnToo = —3k —30P2Q2+ 0% =0, Gy +8tGNTy; = 7 [k — Q%0724+ 2007 1 + Q2p} =0,
. . . 10
p = 3kQ24+30°Q71, p=—-kQ 24+ 20073 p=—p-— §§p7 (4.13)

(after setting 8wGy = 1), with the last relation following from V,T*” = 0, viz. conservation of the background energy-
momentum tensor in the full 4-space. To solve these equations we would need an equation of state that would relate p and

.
For G, we have

dGop
0Go;

5G¢j =

g"oG,, =

—6ko — 6k + 60007 + 2007V, VB — 2007V, VE — 2V, V%),

= 3kV,B — Q*Q 72V, B + 2007 'V, B — 2kV,E — 2V — 2007 'V, + 2kB; — kE;

~BO*Q 4+ 28,007 + 1V, VB, — 1V, V'L,

—20;; + 20%7;;0Q 7% + 20790072 — 2005,;Q 71 — 407,07 — 407,007

— 407,00 = 207,07V, VB — 3,V VB + 7,;V,VE + 207,07 'V, V'E

35 VaV + 755V VY + 2007V, V,B + V,;V,B — V,V,E — 20Q7'V,;V,E
F2kV; Vi E — 202072V, V,E + 4007 'V, V,E + V;Vip — V; Vb + QQ 'V, B; + 1V, B,
—IViE; — QQ7IV,E; + kViE; — Q?Q 7V, E; + 2007 'V B + QQ7IWV; B + 1V, B
—IV,E; — QQ7IE; + kVE; — Q*Q7V,E; + 2007V, B, — By — 202E;,Q77
—2F;;Q07 +4Q0E,;,Q7 + V,V Ey;,

60200 + 60200 — 66003 — 189003 — 120002 — 120002 — 602 + 6kpQ 2
+6kQ 2 — 60073V, VB — 2072V, VB + 2072V, V°F + 6QQ°V,V°E
—202Q7'V,VE + 4007V, VE + 2kQ 72V, V°E — 2072V, V% + 4072V, V™. (4.14)



On using (4.13) for the background but without imposing any relation between the background p and p, we obtain
evolution equations (again with 87Gy = 1) of the form

Ao = 6Q°Q (a0 —4) 4 6p02 4+ 20071V, Ve = 0, (4.15)
Ngi = —2007Vi(a —4) + 2kViy + (—422Q73 + 20072 — 2kQHV,V
+k(B; — E) + iV, VB — E;) + (—402Q7% + 20072 — 2kQ 1)V, (4.16)
Ay = 3 [222Q7 % (a — 4) — 2297 (@ — ) — 409 (o — ) + Q%P — Vo, V(a + 200 1y)]

+V V(e +20071) + QQIVi(B; — E)) + 3Vi(B; — E)) + QU 'V(Bi — E) + AVi(B; — E))

— B — 2kE; — 2E,;Q07 + V,V*E;; = 0, (4.17)
FIN; = 6072 (a —4) — 6QQ (@ —F) — 12Q0 7 (a — ) + 3Q%0p — 2V, V(o + 200 1) = 0,
gV, = 30p—0p— 120073 (a — ) — 62073 (q — 5) — 2072V, V(a + 30071) = 0, (4.18)
where the gauge invariants are
C¥:¢+'¢+B—E, ’Y:QQilw—Bﬁ—E, Bi_Ei; Eij;

6p=0p—3(p+p), Op=2dp+ ﬁpw (4.19)

These A, = 0 equations are remarkably compact and are manifestly 4-dimensionally gauge invariant, just as required. As
constructed, we have 11 fluctuation variables, the six from the metric together with dp, dp, V and the transverse 2-component
V;. But we only have ten fluctuation equations A, = 0. Thus to solve the theory when there is both a dp and a op we will
need some constraint between dp and dp. Usually one sets dp/dp = v?, where v is the velocity of sound.



4.5 Decomposition Theorem

To unravel these equations we introduce the decomposition theorem, an ansatz that claims that we can decouple the scalar,
vector and tensor sectors into nine equations for the fluctuation components, viz.

6020 % (o — 4) 4 6pQ2 + 20071V, Ve = 0,

—2007'V,(a — 4) + 2V v + (—492Q73 + 20072 — 2kQ~ )V, V = 0,

+k(B; — E) + iV, VB — E;) + (—40°Q7% + 20072 — 2kQ 1)V, = 0,

3 202072 (o — 4) — 2007 (& — §) — 499 o — §) + Q2P — V.,V (a + 200 71)]

+@iﬁj(& + 29971’7) =0,

Q0 1V,(B; — B)) + Vi(By — By) + 00 1V,(B, — B) + 1,(B. — ) =0,
—Ejj — 2kE;; — 2E,Q07' + V,V°E;; = 0, (4.20)

with the trace condition being of the firm

36p — 0p — 120073 (o — ) — 62073 (& — 7) — 2072V, V(a4 3007 ) = 0. (4.21)

With 4;; and V;V; not being equal to each other, the fourth equation in (4.20) splits into two pieces
202072 (v — ) — 2007 e —4) —4QQ N (a =) + Q%0p =0, a4+ 2001y =0. (4.22)

and now we have ten fluctuation equations.



However, this decomposition theorem is not obvious, since if S is a scalar then V,S is a vector, and thus we can not use
angular momentum conservation to decouple the scalar, vector and tensor components. Specifically, we note that if we have
a generic equation of the form

Bi+ 0B =C,+ 0. (4.23)
where the B’ and C" obey 9;,B° = 0, 9;C" = 0, it does not follow that
B,=Ci. 0B =aC. (4.24)
since on applying 9" to (4.23) we obtain
9'0;(B —C) = 0. (4.25)

Thus in Cartesian coordinates we can only obtain B — C = a + b;z’, where a and b; are constants. To be able to set
B = C (and thus B* = C") we need to set a = 0, b = 0. Thus we can do by requiring that B — C vanishes at infinity,
in consequence of which it would then vanish everywhere.. Thus to get a decomposition theorem in this case, we need a
boundary condition. To see how this can work in the general case we need to decouple the fluctuation equations, with Ay
being the only component of A, that is already decoupled, being pure scalar sector.



5 Decoupling the Fluctuation Equations

5.1 Some general tensor algebra relations

Starting from the general identities
vkvnTEm - ankam - TSmRﬁsnk + TgsRmsnky vlcvnAAm - vnkaélm = AsRmsnk (51)

that hold for any rank two tensor or vector in any geometry, for the 3-space Robertson-Walker geometry where Ryonr =
k(YsnYmk — YmnJsk) We obtain

ViV VeA; — V V'V Aj = 2k7,;V,A® — 2k(V;A; + VA,

VIVVIA, = (Vo 20)SIA, VIVIA = ViVIA, + 2KA, (5.2)
for any 3-vector A; in a maximally symmetric 3-geometry with 3-curvature k. Similarly, noting that for any scalar S in any
geometry we have

V.ViV:S =V, V,V,S =V, V. VS 4+ VS Rysia,
ViViV . ViS = VoV ViVieS + Vo [VES Risinel + VPVES Risne + Vi VS Risne + Vi [VES Risnkl s (5.3)

in a Robertson-Walker 3-geometry background we obtain

TS = VLTS LS, T VVY,S = UV, VTS + 6K(VLV, — 13, V.9,
6(16@62'@]'5 = @@@j@LL@aS + 6]662@]5 — 2]{1%3-@@@‘15. (54)
5.2 Scalar sector

Thus we find the pure scalar

Vidy = VoV =200 (a —4) + 2ky + (—4Q°Q73 + 20072 — 2kQ1)V] = 0, (5.5)

5.3 Vector sector
and thus the pure vector sector

(ViVFE —2k)Ay = (ViVF = 2k) {k(Bi — ) + IV, VUB; — ;) + (402072 + 20077 — QkQ‘l)VZ} = 0. (5.6)



Also we obtain

V'V Ay = €7V [k(Bz E) + $VaVY(B; — ;) + (—40°Q7° + 2007 — 2kQ V| = 0. (5.7)

1
2

5.4 Scalar, vector and tensor sector

Now in any maximally symmetric space for any given E;; that is transverse and traceless, it follows that the quantity
V.V®E;; is transverse and traceless too. Thus given (5.2) we obtain

VIA;; = Vi22Q7% (o —4) — 2007 (& — ) — 4907 (a — ) + Q26 + 2k(a + 2007 15)]
F[V V4 2K A(B; — E) + Q7 Y(B, - E)] =0, (5.8)

VIVIA;; = V V202072 (a — 4) — 2007 (& — %) — 409 Y a — %) + Q%6p
+2k(a + 2007 19)] = 0. (5.9)

5.5 Scalar sector

Thus we obtain the pure scalar sector

3VIVIA;; — Vo VUAIA) = 2V V2 4 3K] (o + 2007 1y) =0, (5.10)

VIVIA; + kYT A = [V2 4 3K][202Q7 2 (a — &) — 2007 Y a — 4) — 4007 (a — ) + Q%0p] = 0. (5.11)
We now define A4 = 20207 2(ar — 4) — 2Q0 (& — ) — 4QQ o — ) + Q20p and C = a + 2020y, And using (5.4) obtain
(VoVe 4+ k)Vi(A+ 2kC) = V;(V,V® + 3k) (A + 2kC), (5.12)

and thus with (5.10) and (5.11) obtain

(VoV® = 2k) (Vo Ve + E)Vi(A + 2kC) = V;V, V4V, V + 3k) (A + 2kC) = 0. (5.13)



5.6 Vector sector

Consequently, on comparing with (5.8) we obtain
(Vo V" = 28) (Vi VP + B)VIA;; = (V, V" = 2k) (V) VP + k) [ V.V + 2K][3(B; — E;) + QQ (B, — E;)] = 0, (5.14)

to give a relation that only involves B; — E;.

5.7 Vector and tensor sector

To obtain a relation that involves E;; we proceed as follows. We note that sector of A;; that contains the above A and C
can be written as

D;; =7i;(A -V, VC) + V,;V,C. (5.15)
We thus introduce
1. ~a vAY = wa
Ay = Dy - 3% "Day = (ViVj — £9;;V.V)C,
1. ~a A v Al w0
Bz’j = A 3%3’)/ bAab = (V V — %%N Vv )C
+ QOB - B)) + V(B - E;) + QQ'V(B; — E;) + 5V;(B; - E))
— By —2kE; — 2E,;Q07 4+ V,V°E;; = 0, (5.16)

with (5.16) defining A;; and B;;, and with A dropping out. Using (5.2) and the third relation in (5.4) we obtain

(VyV? = 3k) Ay = (ViV; — 33,V V) (V, V! + 3k)C, (5.17)
and via (5.4) and (5.10) thus obtain
(VoV® = 6k)(Vy V" — 3k)Ajj = (V;V; — 33,V VYV, VI (V. VE + 3k)C = 0. (5.18)

Comparing with the structure of A;; and 57A;;, we thus obtain

(VaV? = 6k) (Vs = 3K)[Bi; — Ayj] = (VaV" — 6k)(V,V" - 3k)



x [QQ7IV(B; — E;) + iVi(B; — E)) + QQ 7'V (B — E) + iV,(B; — E)
— By — 2kEy — 2097 B + V,V°E;;] = 0. (5.19)

We now note that for any vector 4; that obeys ViA; = 0, through repeated use of the first relation in (5.2) we obtain

(VoVP = 3E) (Vi A; + ViA) = Vi(ViVP + k) A; 4+ V, (Vi VP + k) A;,
(V Ve — 6k)(Vbe 3/{)(? Aj+ V4 = Vi(V V" = 2k) (V) VP + k) A; + V;(V, V= 2k)(V, VP + k) A;.

(5.20)
On using the first relation in (5.2) again, it follows that
(VeV© = 2k) (Vo V" = 6k)(Vy V" = 3k)(ViA; + V;A;)
= Vi(V Ve +2k)(V,V = 28) (V) VP + k) A; + V(V V4 2k)(V, V= 2k)(V VP + k) A, (5.21)
5.8 Vector sector
On setting A; = 3(B; — E;) + QQ~Y(B; — E;) (so that A; is such that V'A; = 0), and recalling (5.14) we obtain
(VeVE = 2k)(V, V¢ — 6k)(V, V' — 3k)
X | Vi[3(B; — Ej) + QQ7N(B; — Ej)] + V,[3(Bi — E;) + QQ ' (B; — Ej)]| = 0. (5.22)
5.9 Tensor sector
Thus finally from (5.19) we obtain
(VVE = 2k)(V,V® — 6k) (V) VP — 3k) [ — Byj — 2kEy; — 2007 E;; + V,V E;;] = 0. (5.23)

Thus with ten independent fluctuation equations, four for the scalars [(4.15), (5.5), (5.10), (5.11)], two two-component
equations for the vectors [(5.6), (5.14)], and one two-component equation for the tensor [(5.23)], we have succeeded in
decomposing the fluctuation equations for the components, with the various components obeying derivative equations that
are higher than second order.



5.10 The decoupled relations

The decoupled relations

Agy = 62Q 2 (a — 4) + 6pQ2 + 20071V, Ve = 0,
ViAy =V, Vo = 2007 (a — ) + 2ky + (—4Q°Q73 + 20072 — 2kQ V] = 0,
3VIVIA; — @N@(a%zj) = 2V2[V? + 3k](a + 2007 1y) = 0,
VIVIAG + EYIA; = [V2 4 3K)[202Q 2 (o — 4) — 209 H(a — ) — 499 (o — ) + Q265p] = 0.
(VeV* = 26)Ag; = (ViVF = 26) [k(B; = B) + §VaV* (B — Ey) + (~40207 4 20072 - 207V =0,
(VoVe = 2k)(Vy VP + k)VIA; = (Vo V= 2k)(Vy VP + k) [V, vc + Qk][ (B; — )+ QQYB; — E;)] = 0,
(VVE = 2k)(V, V" — 6k)(VyV° = 3k)[ — Eij — 2kEy; — 2QQ ' Ey; + V,V E;;] =0 (5.24)
are exact without approximation. They are all in the form of derivative operators acting on the functions required of the

decomposition theorem.
Then with appropriate asymptotic boundary conditions we obtain

6920 % (o — 4) + 6pQ + 2007V, Vi = 0,
—2007 a — ) + 2ky + (—49°Q73 + 20072 — 2kQ~HV =0,
a4 20071y =0,
2(0 =) — 200 e — ) — 490 (o — ) + Q%0p = 0.
Vo VUB; — E;) + (—402Q73 + 20072 — 2kQ° YV, = 0,
B, — E)+QQ (B, — E;) =0,

— By — 2kE;; — 2QQ 7 By + V,V°E; = 0. (5.25)

2020
k(B; — E;) +

41
2

These boundary conditions are not new conditions since we already required asymptotic convergence in
order to set up the SVT basis in (3.3) in the first place. Having now set up the formalism we look at some
solutions.



6 Fluctuations Around de Sitter

For de Sitter the background fluid is a cosmological constant term 7}, = Ag,,. With a time-independent Hubble parameter
H and k = 0 the comoving time expansion radius is given by a(t) = eff. Thus the conformal time 7 = —e '/H and
Q(1) =1/H7. The decomposition theorem gives us

Sla—7)— %@a@“y =0,

%(Oé - /7) - 07
o — 72_—7 = 07
Hla=9)+ 2@ =4+ H@=9) =0
WBi—E)—YBi - E;) =0,
. 2 . .
—Eij + ;Eij +V,VE;; = 0. (6.1)
In this solution we have
Thus the only nontrivial modes are the tensor modes. And in a plane wave mode with momentum k, E;; is given as
Ei; = ei;(k)7%[a1(k)j1(kT) + by (K)y1 (k7)]e™™, (6.3)

where k - k = k%, j; and y; are spherical Bessel functions, and a;(k) and b;(k) are spacetime independent constants. For
FE;; to obey the transverse and traceless conditions 6% E;; = 0, V/E;; = 0 the polarization tensor ¢;;(k) must obey 67¢;; = 0,
k’e;;(k) = 0. Then, by taking a family of separation constants we can form a transverse-traceless wave packet

LB = Z eij(k)Tz[al (k)]l(kT) + b (k)yl(kT)]eik'X
k

= Y ek [cu(k) (Si“éﬁ”) - TCOjf“) (k) (Coslif” i TS“;(’”)H | (6.4)

k

and can choose the a1(k) and b (k) coefficients to make the packet be as well-behaved at spatial infinity as desired. Finally,
since the full fluctuation is given not by FEj; but by 2F;;/H?*7%, then with 7 = —e~f'/H through the cos(k7)/k* term we
find that at large comoving time E;; /7% behaves as e*’', viz. the standard de Sitter inflation fluctuation exponential growth.



7 Conformal Gravity

Conformal gravity is a candidate alternate metric gravitational theory that has not only general coordinate invariance but
also local conformal invariance, i.e., invariance under g, (z) — €2*@g,, (x) for arbitrary spacetime dependent a(z). Under
this transformation the conformal Weyl tensor, defined as
1 1

C)\;wm = R)\,UVH - 5 (g/\VR;m - ngW - g/wR)\m + g/mR)\u) + éRaa (9/\1/9”;-; - gmg;w) (71)

transforms as CAW,@- — C’AWFJ with all derivatives of a(z) dropping out. In consequence the action
1
Iy = —ozg/d4x (—g)1/2CAW,€CAW“ = —2ag/d4a} (—g)'/? [RWR““ —3
is locally conformal invariant. Not only that, it is the unique action that possesses this invariance. The attraction of

this theory is that it forbids the presence of any cosmological constant term at the level of the Lagrangian. With the
gravitational coupling constant o, being dimensionless, quantum-mechanically the theory is power counting renormalizable.

(R%,)" (7.2)

It is also unitary, and thus provides a consistent quantum gravity theory in four spacetime dimensions. No strings, no extra
dimensions, no supersymmetry.

With the Weyl action Iy given in (7.2) being a fourth-order derivative function of the metric, functional variation with
respect to the metric g,,(z) generates fourth-order derivative gravitational equations of motion of the form

2 Olw
(=9)" 0gyu
where the functions W(*f)/ and W(’g)j (respectively associated with the (R*,)? and R, R"* terms in (7.2)) are given by

14 VK VK 14 1 17 v
= da,W" = da, [2V, VO — R\CHYF] = day, [W{;) - gwg)} =T, (7.3)

1
Wi = 20" ViVIRY, < 2VIVIRY, 2R R 4 g (RY)

1 1
Wi = S9"VaVIR, + VaVIRY = VoV RY = VPR = 2R R, + 29" Rag R, (7-4)

and where T"" is the conformal invariant, and thus traceless, energy-momentum tensor associated with a conformal matter
source. Here W = W/’ — (1/3)W(}] is known as the Bach tensor. In addition, the conformal Weyl tensor vanishes in
geometries that are conformal to flat, this precisely being the case for the Robertson-Walker and de Sitter geometries that
are of relevance to cosmology. Thus with the cosmological principle it follows that 7}, = 0, so that it allows for the creation
of a universe from nothing, provided of course that 7}, vanishes nontrivially, something we now show to be the case.



8 The Conformal Gravity Background Cosmology

Since particles can only acquire mass in a conformal invariant theory by symmetry breaking, we introduce a scalar field
S(x) for this purpose. We take the matter sector fields to be represented by fermions, with the conformally invariant matter
sector action then being of the form

Tr =~ / d'x(~g)"" Evusvﬂs — SR 4 AS VIO, + D)}~ hSTY (8.1)

where h and A are dimensionless coupling constants and the V/(z) are vierbeins. As such, the Iy; action is the most general
curved space matter action for the ¢ (x) and S(x) fields that is invariant under both general coordinate transformations and
the local conformal transformation S(x) — e~*®S(x), ¥(z) — e 3@/ 2)(z), (x) — e 3@/ 2)(x), Vi(r) — ea(x)V/f(x),
guv(r) = *@g, (x). Variation of this action with respect to ¢(z) and S(z) yields the equations of motion

1 _
V@) O+ D)o = hSY =0, V, V'S + SR, - ANS® + hapnp = 0. (8.2)

We take the fermions to form a general background matter sector perfect fluid (labelled by m), and thus when the scalar
field acquires a constant symmetry breaking vacuum expectation value Sy the total background matter sector T#" is then

of the form . | |
T = —1{(pm + pm)UU" + pmg"’] — 653 <R’“’ - ig“”Raa) — gW)\Sé. (8.3)
c



8.1 The Background Equations

Since W, is zero in RW geometries, then so is 7},,. Thus it follows that
1 2 v 1 vV pQ 1 v v v 4
650 RM — Eg“ R, | = p [(pm + D) UPU” + pig"’] — g"" AS;. (8.4)

We thus recognize the conformal cosmological evolution equation given in (8.4) as being of the form as none other than the
cosmological evolution equation of the standard theory, viz. (on setting A = \S;)

3 1 1
— R — —g" R, | = — [(pm + pm)UU” 4+ ppg"’] — g"" A, 8.5
o (B = 3R] = Lo PV U 4 5] g (8.5)
save only for the fact that the standard G has been replaced by an effective, dynamically induced one given by
3c3
Gt = ———5, 8.6
i 47 S? (86)

viz. by an effective gravitational coupling that is expressly negative. Conformal cosmology is thus controlled by an effective
gravitational coupling that is repulsive rather than attractive, and which becomes smaller the larger Sy might be. With Gg
being negative, cosmological gravity is repulsive, and thus naturally leads to cosmic acceleration.

Despite the fact that the global cosmological G.g is negative, local inhomogeneous gravity associated with a static source
is not controlled by the global Geg associated with a homogeneous comoving geometry and a vanishing Weyl tensor but by an
induced local attractive G that is associated with an inhomogeneous geometry and a non-vanishing Weyl tensor. The static
limit consists of both a 1/r potential and a linear r potential. Because the potential grows with r one cannot ignore material
outside of any galaxy. Moreover the material furthest away has the biggest impact and is thus of cosmological strength.
And not only that it leads to an additional universal linear potential vy where 7, is fixed by the spatial 3-curvature of the
Universe according to vy = (—4k)1/ 2. a relation that requires that & expressly be negative. This then enables conformal
gravity to fit galactic rotation curves without any dark matter and determine that (—4k)1/ 2 =3.06 x 1073%m~!. Thus the
missing mass is the rest of the visible mass in the Universe, and it has been hiding in plain sight all along.
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FIG. 1: Fitting to the rotational velocities (in km sec™!) of the THINGS 18 galaxy sample




To be able to see how central the negative sign of G.g is to cosmic acceleration we define

= 87TGeffpm (t) 87TGeffA = kC2
Qpy(t) = ——ctfmy) t) = i t) = —— 8.7
u(t) 32H2(t) Al) 3cH2(t)’ k(1) a(t)’ (87)
where H = a/a. And on introducing the deceleration parameter ¢ = —adi/a?, from (8.4) we obtain

a’*(t) + ke = a®(t) (e(t) + @), Q) +Qalt) + ) =1, q(t) = % <1 + ?’Zﬁ) Qu(t) — Qa(t)  (8.8)
m
as the background evolution equations of conformal cosmology.

Given (8.8), and without needing to specify any matter sector equation of state and without even needing to solve the
theory explicitly at all, we are still able to constrain ¢(t). Specifically, we note that since A represents the free energy that
is released in the phase transition that generated Sj in the first place, A (and thus the scalar field coupling constant \) is
necessarily negative. Then with Geg also being negative the quantity x(¢) is positive, i.e., the conformal theory needs a
negative G in order to obtain a positive Q4 (¢). (In contrast, the standard model rationale for positive Q) = 87GyA/3c2H?
is that since the Newtonian G is positive A has to be taken to be positive too.) Since p,, and p,, are associated with ordinary
matter they are both positive. Thus Q,/(¢) is negative and Q,(¢) is positive. Thus since Geg is negative it follows that ¢(t) is
automatically negative, being so in every epoch. Consequently, conformal cosmology is automatically accelerating
in every cosmological epoch without any adjustment or fine tuning of parameters ever being needed.

If we take A to be much bigger than p,, the evolution equations admit of an exact comoving frame solution of the form

a(t) = (=k/o)Y?sinh(c?ct), (8.9)
where 0 = —2\S3 = 87GerA/3c is positive. With such an a(t) we obtain
Qa(t) = tanh?(c'%ct), Qu(t) = sech®(6"%ct), q(t) = —tanh?(c'/%ct), (8.10)

As we see, no matter how big A might be, Q(¢) has to lie between zero and one, i.e., because k is negative {5 (¢) approaches
one from below. The cosmological constant problem is thus solved not by making A small but by making the amount by
which it gravitates small (i.e., small Geg and large Sp). Similarly, ¢(¢) has to lie between zero and minus one, with measured
value ¢y = —0.37.

The current value of the Hubble parameter is given by H(ty) = o'/%ccoth(c/?cty). With gy = —0.37 we obtain o'/?cty =
0.71, and ty = 1.16/H(ty) = 5 x 10'7 sec. Also ¢%/? = 0.50 x 1072cm~!. With (k)2 = 1.53 x 107" cm™! we obtain
a(ty) = 2.36 x 1072, As we will see, this number is small enough to enable us to reliably do perturbation theory.



The lluminosity distance redshift relation of the form

c (1—|—z)2 % 1/2
CH(t) 1‘(”‘“‘@) ] (8.11)

where ¢y = q(ty) and H(t() are the current era values of the deceleration parameter and the Hubble parameter.

Fitting the type 1A supernovae accelerating universe data with (8.11) gives a fit that is comparable in quality with that
of the standard model Q,,(ty) = 0.3, Qx(ty) = 0.7 dark matter dark energy paradigm. In the conformal gravity fit qq is
fitted to the value —0.37, i.e., quite non-trivially found to be right in the allowed —1 < gy < 0 range, with Q4 (tg) = 0.37,
Qi(to) = 0.63. Since Qj/(y) is negligible no dark matter is needed, and since gy and Q4 (ty) = —qo fall right in the allowed
region, no fine tuning is needed either. The ability of the conformal gravity theory to fit the accelerating universe data thus
confirms that in conformal cosmology k is indeed negative. So now let us see what the fluctuations look like.

apparent magniude
T

redshift

Figure 3: Hubble plot expectations for ¢y = —0.37 (highest curve) and ¢y = 0 (middle curve) conformal gravity and for ,,(¢y) = 0.3,
Qa(to) = 0.7 standard gravity (lowest curve).



9 Conformal Gravity Fluctuations

Taking the line element to be

d 2
ds” = —(gu + Iy )datde” = Q(7) |dr® - - Tk S — r2d6® — r?sin® g’
— KT

we need to solve 4a,0W,,, = 07}, about a background in which both W,, and 7T}, vanish. 07}, is the same A, that we
gave in (4.15) to (4.17) but with the repulsive G replacing the attractive G y.
It is convenient to define

N = —222‘9, R= ——G(pmsg A p_ ——G(WSg D) sp = 6‘;“”, 5P = —6‘;%””‘. (9.2)
The background and fluctuation equations then take the form
Wi = G+ = [(R+ PYUU, + Pl (9.3)
noW,, = 0G,, + % (6R+0P)U,U, + 0Py + (R+ P)(0U,U, +U,0U,) + Ph,,| = Ay, (9.4)
The fluctuation 0W,, in the Bach tensor W, is of the form
W = —3 92 ——(V,V" + 3k)V, Via,
Woi = —3;26 (Vo V4 3k)c + ﬁ(vbvb 0% — 2k) (V. V¢ + 2k)(B; — E;),
oWy = —ﬁ [gﬁﬁa(vbvb + 2k — *)a — V,;V;(V,V° — 303)04}
+$ [W@N@ — %k — O2)(B; — E) + Vi(V. V" — 2%k — 02)(B; — EZ)]
+% [(~ VP~ 92— 2k)? +4k83_} i (9.5)



With

Q’R = 3k+30°Q7% Q’P=—k+020 2200, R+3QR+P)Q =0,
o = ¢+p+B—E, v=-Q'QW+B-—FE, V=V-QXQ %,

SR = 6R— 1202001 + 60y % — 6k~ 2 = 6R+ Q' RyYQ = 6R — 3(R + P)y,

6P = 0P — A0 + 8000 % 4 2ky Q22 — 200 W02 = 6P + Q1 PyQ,

the full and exact conformal cosmological fluctuation equations are of the form

2 a b
noWoo = —ﬁ(v Ve 4 3k)V, VP

= Ay = 602072 (a — #) + 6RO + 2007V, V7,

. 2 a b 2 C y .
noWo; = 392v (Vo V" + 3k)a + 2Qz(v WV — 02 — 2k)(V. j + 2k)(B; — E))
= Ay = 2007 'Vi(a —4) + 2kVy + (—4020Q73 420072 — 260 YV, V
) 1~ - ) .
+h(B; = Ej) + 5V V(B; - B + (—4902Q73 4 20072 — 2kQ 7YV,

noWy; = —% [ NV VUV + 2k — P — VYV, (V, VO — 383)04}
% [ (Vo — 2k — ) (B — B)) + V;(VaV® — 2k — 82)(B; — E)]

+ [(vbvb — 9% — 2k) + 4k02| E

= Aj; =7 [202072 (o — 4) — 2007 (@ — §) — 400 (a — §) + Q2P — V,V(a + 200~

(9.6)

(9.7)

(9.8)

']

. ) . - . 1. . . ) . . 1. . .
+ViVj(a+200719) + QQ'V,(B; — E;) + 5 Vi(B — Ej) + QO V(B — E;) + 5 Vi(Bi — Ei)

_Eij — QkEm — 2E¢jQQil + @a@aEij.

(9.9)



9.1 The Decomposition Theorem

The Decomposition Theorem also holds in conforrnal gravity and yields

~308 (VL V 3KV Vha = 602072 (a — ) + SRO? + 20071V, V%,

(v VE + 2k) = (V¥ — 02 — 2k)(B: — E))

Q?
— é(vcvc +2k)(B; — E;) + (—402Q7% + 20072 — 2kQ7 NV,

/)7 ~ ~ . . . o ~ ~ a
P (VyV? — 0% — 2k)? + 4k0?| Eyj = — By — 2kEjj — 26,007 4+ V,V°Ej;.

a b 2
3Q2v NV VP 42k — 9%)a ” - |
= 202072 (a — 4) — 2QQ & — 5) — 409 (o — 4) + Q2P — V,V%a + 2007 1),

392(v V- 30%)a = a4 200 1y,

~ 200 (W, V+ 3k)d = —200 (o — ) + 2k + (—402078 + 20077 — 2kQ )V,

. . 1 . .
2QQ(vva—zk 9?)(B; — E;) = QQ 1(BZ-—EZ-)+§(BZ-—EZ-),

(9.10)

(9.11)

(9.12)

(9.13)

(9.14)

(9.15)

(9.16)



Following some algebra we can manipulate these equations to obtain

d . . . . . . . .
- (—3@9—2)(1/ - QQ(SR) — (vbvb + 3k — SQQQ‘2> [Q'XV]+ QR = X (V, V" + 3k) [nQ 26 +1] ,
P
- (di + 25’29—1) (QIXV) — Q%P = X(a — ),
P
—30072XV + Q%R = (VY + 3k) {%(a — 20076 — VVPa) + a} :
£ N & & 2
= | (V, V" — —al. 1
1= [392 (V. V® — 30%)a a} (9.17)

in the scalar sector, where X = 402Q~2 — 200! + 2k¢® = —6Q%¢(pm + pm)/S2.

9.2 The Solution

So far everything is exact. We now specialize to the case where A is much bigger than p,,. Then in comoving time we have
a(t) = (=k/o)?sinh(c'/?ct), so that in conformal time we have

L Sp(k/20Y (—kfo)'?
) = G (R er) ~  sh(( R Per)

(9.18)

With this Q(7) we find that X = 0. On dropping the matter sector 6 R, with asymptotic boundedness we then find that the
equations for a and v simplify to

L 20076~ V%) + a =0,
0 o
1= g [#(vava 302 — a] . (9.19)



9.3 Separating the Variables

We introduce a dimensionless conformal time variable p = (—k)/2cr, and set » = (—k)~'/?sinh ¥ where y is dimensionless.
We set a = a(p)Se(x)Y,"(0, ¢) and introduce a separation constant (—k)(v* + 1). Thus we obtain

(?ﬁa (k) (2 + 1)) Sex) Y0, 6) = 0, (9.20)

[d2 +2008hxi_ ((0+1)

2 _
d_X2 SiIthdX sinh2x + 7+ 1] SK(X) =0, (9.21)

d? coshpd K(K+1)
2 _— - 1 =0 9.22
(dp2 + sinh p dp sinh? p Tt > a(p) ; ( )

where K = —1/2 4 (1/4 — 1/on)"/?. Here ¢ is integer but K is not.

These are standard associated Legendre function equations, with solutions

—1/2-¢ 0+1
s (=D 5 5 2 42 —1/2+iV(COShX) _ winh? 1 d
Sy = o) (v + 1%).... (v + £7) PRI = sinh" x Sl dx cos(vx), (9.23)

where v is a continuous real variable that lies between zero and infinity, and

1 “1/2-K 1 1 1/2-K : : 12
=—P : hp) = th 2)F(1/2 —w,1/2 :3/2 4+ K;—sinh 2
Q’(p) sinhl/2 0 —1/24iv (COS 10) sinh1/2 pF(?)/Q + K) co (:0/ ) ( / w, / + / + A —sn (:0/ ))7
1 . cosh p
—  sinh? 241 2 — = 2L )2 .24
KE D)™ p(v” + 1+ 30,)a(p) — a(p) Sinhp( ) *y(p) (9.24)

in conformal time. With ¢ = ¢!/t in comoving time the solutions are

| 1
(&) = sinh EPY (cosh &) = sinhgm

K(K +1)sinh?€ — 12 + 1+ 2sinh? € — 2(K + 1)(1 + sinh?€) | Pi(cosh €)

coth” (£/2)F(—K, K + 1;1 — iv; — sinh?(£/2)),

27(5)(_@1/2 sinh & cosh & = m [

M(yz +1)P(cosh &) +

3 cosh (K +iv + 1)PiY, 1 (cosh &) — sinh? € Py (cosh €). (9.25)

2
K(K + 1)



10 Growth of Structure

We had noted that currently a(tg) = 2.36 x 1072, With a current temperature Ty = 3°K and an adiabatic expansion in
which a(t) behaves as 1/T', at any earlier time we have a(t) = a(ty)Ty/T. At last scattering, at which the CMB is produced,
the temperature T}, is order 3000°K. So a(tr) = 2.36 x 107°. Now

—k 1/2
a(t) = (=k/o)?sinh(c?ct) = Q(p) = —%. (10.1)
Thus in the early universe p is large (and negative). For large p the associated Legendre functions behave as
_1/2— 1 L(iv)e™? [(—iv)e ™?
P27 K (cosh p) — .
124w (COSBP) = o0 S e i T K+ 1) | @o) T (—iv + K +1)

Now radial modes on the light cone obey dp? — dx? = 0. Thus light rays obey p = —y. Thus large p means large y. With

(10.2)

the conformal time behavior being of the form a(p) = P__ll//;;f(cosh p)/sinh'/? p, and with the y behavior being of the form
aly) = P__ll//;;i(cosh X)/ sinh'/? y, in the early universe light ray fluctuations behave as
1 1 1
~ = ~ Q% (p) ~ — 10.3
Oé(p7 X) Slnh p Sinh X Sinh2 IO (p) T2 ( )
Thus fluctuations grow as
i
alp2,x2) = 75 alpr, x1). (10.4)
2

Thus in going from nucleosynthesis to last scattering the amplitude grows by a factor of (10?/10%)? = 10!2.
In going from nucleosynthesis to today the amplitude grows by a factor of (10/3)? = 107,

In going from 10%3°K to today the amplitude grows by a factor of (10%3/3)? = 10%.

At and we saw that fluctuation grows as

In a standard gravity de Sitter geometry the expansion radius grows as a(t) = e
et ie. as a?(t) ~ 1/T% Thus conformal gravity gives the same growth rate as inflation. However, in conformal gravity
at small ¢ we have a(t) — (—k)"/2ct. Thus because a(ty) is small, at last scattering and earlier the contribution of A is

negligible and the conformal gravity Universe is negative curvature dominated.

THUS WE CAN REPLACE STANDARD GRAVITY INFLATION BY NEGATIVE CURVATURE CON-
FORMAL GRAVITY.
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