Particles as Solitons

  • A.Royston (2020) Solitons at Work talk Accelerating Solitons.
  • Faber (2012) JPhCS 361, 12022 Particles as stable topological solitions.
  • Duda (2009) arXiv:0910.2724 Four-dimensional understanding of quantum mechanics
  • Duda essay Topological solitons of ellipsoid field - particle menagerie correspondence.
  • Lee (1987) PRD 35, 3637. Soliton stars and the critical masses of black holes.

    Dirac Solitons


    non-linear Dirac:
  • Mertens et al (2016) JPhA 49, 5402 Solitary waves in the nonlinear Dirac equation in the presence of external driving forces.
  • Maccari (2006) EJTP 3, 39 . Nonlinear Field Equations and Solitons as Particles.
  • Maccari (2005) PhLA 336, 117. Chaos, solitons and fractals in the nonlinear Dirac equation
    non-linear Klein-Gordon:
  • Maccari (2005) CSF 23,1099. Relativistic solitons and superluminal signals.
  • Maccari (2000) PhLA 276, 79. Approximate particle-like solutions for a nonlinear relativistic scalar complex field model in 3+1 dimensions.
    Einstein-Dirac-etc:
  • Leith, Hooley, Horne, Dritschel (2020) PRD 101, 106012 . Fermion self-trapping in the optical geometry of Einstein-Dirac solitons.
  • Bakucz Canario, Lloyd, Horne, Hooley (2020) PRD 102, 84049. Infinite-redshift localized states of Dirac fermions under Einsteinian gravity.
  • Herdeiro, Perapechka, Radu, Shnir (2019). PhLB 79734845H . Asymptotically flat spinning scalar, Dirac and Proca stars.
  • Blazquez-Salcedo, Knoll, Radu (2019) PhLB 793, 161. Boson and Dirac stars in D.ge.4 dimensions.
  • Herdeiro, Pombo, Radu (2017) PhLB 773, 654. Asymptotically flat scalar, Dirac and Proca stars: Discrete vs. continuous families of solutions.
  • Dolan, Dempsey (2015) CQGra 32, 4001. Bound states of the Dirac equation on Kerr spacetime.
  • Giulini, Grossardt (2012) CQGra 29, 5010. The Schrödinger-Newton equation as a non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields.
  • Finster, Hainzl (2011) JMP 52, 2501. A spatially homogeneous and isotropic Einstein-Dirac cosmology.
  • Bernard (2006) CQGra 23, 4433. Non-existence of black-hole solutions for the electroweak Einstein Dirac Yang/Mills equations.
  • Finster, Smoller, Yau (2002) gr-qc/0211043 Non-Existence of Black Hole Solutions to Static, Spherically Symmetric Einstein-Dirac Systems - a Critical Discussion.
  • Finster, Smoller, Yau (2002) JMP 41, 2173 Non-existence of time-periodic solutions of the Dirac equation in a Reissner-Nordström black hole background.
  • Finster, Smoller, Yau (2000) NuPhB 584, 387. The interaction of Dirac particles with non-abelian gauge fields and gravity - bound states.
  • Finster, Smoller, Yau (2000) JMP 41, 2943. Some recent progress in classical general relativity.
  • Finster, Smoller, Yau (1999) CMaPh 205, 249. Non-Existence of Black Hole Solutions for a Spherically Symmetric, Static Einstein-Dirac-Maxwell System.
  • Finster, Smoller, Yau (1999) gr-qc 10047 The Interaction of Dirac Particles with Non-Abelian Gauge Fields and Gravity - Black Holes
  • Finster, Smoller, Yau (1999) MPLA 14, 1053. The Coupling of Gravity to Spin and Electromagnetism
  • Finster, Smoller, Yau (1999) PhLA 259 431. Particle-like solutions of the Einstein-Dirac-Maxwell equation
  • Finster, Smoller, Yau (1999) PRD 59, j4020. Particlelike solutions of the Einstein-Dirac equations.
  • Lee, Pang (1987) PRD 35 3678. Fermion soliton stars and black holes.
    Dirac-Maxwell:
  • Lisi (1995) JPhA 29, 5385. A solitary wave solution of the Maxwell-Dirac equations.
    Einstein-Proca-Higgs:
  • Dzhunushaliev, Folomeev (2021) arXiv:2112.06227. Proca balls with angular momentum or flux of electric field.
  • Dzhunushaliev, Folomeev (2021) PhRvD 104, 6027. Axially symmetric particlelike solutions with the flux of a magnetic field in the non-Abelian Proca-Higgs theory.
  • Dzhunushaliev, Folomeev (2021) PhRvD 104, 4024. Axially symmetric Proca-Higgs boson stars.
    Einstein-Proca:
  • Herdeiro, Perapechka, Radu, Shnir (2019). PhLB 79734845H . Asymptotically flat spinning scalar, Dirac and Proca stars.
  • Herdeiro, Pombo, Radu (2017) PhLB 773, 654. Asymptotically flat scalar, Dirac and Proca stars: Discrete vs. continuous families of solutions.
  • Brito, Cardoso, Herdeiro, Radu (2016) PhLB 752, 291. Proca stars: Gravitating Bose-Einstein condensates of massive spin 1 particles.
    Einstein-Yang-Mills:
  • Smoller, Wasserman (1998) CMaPh 194, 707. Extendability of Solutions of the Einstein-Yang/Mills Equations.
  • Breitenlohner, Forgacs, Maison (1994) CMaPh 163, 141. Static spherically symmetric solutions of the Einstein-Yang-Mills equations.
  • Smoller, Wasserman, Yau (1993) CMaPh 154, 377. Existence of black hole solutions for the Einstein-Yang/Mills equations.
  • Kunzle, Masood-Ul-Alam (1990) JMP 31, 928. Spherically symmetric static SU(2) Einstein-Yang-Mills fields
  • Bartnik, McKinnon (1988) PRL 61, 141. Particlelike solutions of the Einstein-Yang-Mills equations.
    Scalar Fields.
  • Schlögel, Rinaldi, Staelens, Füzfa (2014) PhRvD, 90, 44056. Particlelike solutions in modified gravity: The Higgs monopole.
  • Füzfa, Rinaldi, Schlögel PhRvL 111 1103. Particlelike Distributions of the Higgs Field Nonminimally Coupled to Gravity.
  • Brihaye, Hartmann, Tojiev (2013) PRD 88, 104006. AdS solitons with conformal scalar hair.
  • Wehys, Ravndahl (2007) JPhCS 66 2024. Gravity coupled to a scalar field in extra dimensions.
  • Friedberg, Lee, Pang (1987) PRD 35 3658. Scalar soliton stars and black holes.
  • Friedberg, Lee, Pang (1987) PRD 35, 3640. Mini-soliton stars.
    Walkers:
  • Bush, Oza (2020) Rep.Prog.Phys. 84, 017001. Hydrodynamic quantum analogs.
  • Dual Walkers
  • Harris, Moukhtar, Fort, Couder, Bush (2013) PRE 88, 1001. Wavelike statistics from pilot-wave dynamics in a circular corral.
  • Pucci, Fort, Ben Amar, Couder (2011) PRL 106, 4503. Mutual Adaptation of a Faraday Instability Pattern with its Flexible Boundaries in Floating Fluid Drops.
  • Eddi, Fort, Moisy, Couder (2008) PRL 102, 0401. Unpredictable Tunneling of a Classical Wave-Particle Association.
  • Protiere, Bohn, Couder (2008) PRE 78, 6204. Exotic orbits of two interacting wave sources.
  • Couder, Fort (2006) Single-Particle Diffraction and Interference at a Macroscopic Scale.
  • Protiere, Couder (2006) PhFl 18, 1114. Orbital motion of bouncing drops.
  • Couder, Protiere, Fort, Boudaoud (2005) Nature 437, 208. Dynamical phenomena: Walking and orbiting droplets.
    Photon stars.
  • Foster, Langford, Perez-Giz (2016) Class. Quantum Grav. 33, 055002. Orbiting radiation stars.
    Particle-Wave Duality:
  • Kocsis, Braverman, Ravets, Stevens, Mirin, Shalm, Steinberg (2011) Science 332, 1170. Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer.
    Gravito-thermal catastrophe
  • Lynden-Bell, Wood (1968) MNRAS 138, 496. The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems.
    Negative Mass:
  • Manfredi, Rouet, Miller, Chardin (2018) PRD 98, 023514 Cosmological structure formation with negative mass.
  • Farnes (2018) A&A, 620, 92 A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified LambdaCDM Framework.
  • Benoit-Levy, Chardin (2012) A&A, 537, 78 Introducing the Dirac-Milne universe.
  • Madarasz, Szekely, Stannett (2014) (arXiv:1407.6047) On the Possibility and Consequences of Negative Mass.
  • Petit, d'Agostini (2014) Astr.Space.Sci. Negative mass hypothesis in cosmology and the nature of dark energy.
  • Hammond (2013) (arXiv:1308.2683) Negative Mass.
  • Belletete, Paranjape (2013) JMPD 1341017 On Negative Mass.
  • Ivanov (2012) PhyU 55, 1232 On relativistic motion of a pair of particles having opposite signs of masses.
  • Piran, T. (1997) GenRel&Grav. 20, 1363 On Gravitational Repulsion.
  • Woodward (1994) FoPhL 7, 59 ADM electrons and the equivalence principle.
  • Bondi (1957) RvMP 29, 423 Negative Mass in General Relativity.
    Return to Astronomy Group Homepage


    Keith Horne (kdh1@st-andrews.ac.uk)