AS1001: Galaxies and Cosmology
Keith Horne
kdh1@st-and.ac.uk http://www-star.st-and.ac.uk/~kdh1/eg/eg.html Text: Kutner Astronomy:A Physical Perspective Chapters $17-21$

Course Outline

- Galaxies (distances, components, spectra)
- Evidence for Dark Matter
- Black Holes \& Quasars
- Development of Cosmology
- Hubble's Law \& Expansion of the Universe
- The Hot Big Bang
- Hot Topics (e.g. Dark Energy)

What's in the exam?

- Two questions on this course: (answer at least one)
- Descriptive and numeric parts
- All equations (except Hubble's Law) are also in Stars \& Elementary Astrophysics
- Lecture notes contain all information needed for the exam. Use book chapters for more details, background, and problem sets

Lecture 1: Distances to Galaxies

- How do we measure distances to galaxies?
- Standard Candles (e.g. Cepheid variables)
- Distance Modulus equation
- Example questions

A Brief History

- 1611: Galileo supports Copernicus (Planets orbit Sun, not Earth) COPERNICAN COSMOLOGY
- 1742: Maupertius identifies "nebulae"
- 1784: Messier catalogue (103 fuzzy objects)
- 1864: Huggins: first spectrum for a nebula
- 1908: Leavitt: Cepheids in LMC
- 1924: Hubble: Cepheids in Andromeda

MODERN COSMOLOGY

- 1929: Hubble discovers the expansion of the local universe
- 1929: Einstein's General Relativity
- 1948: Gamov predicts background radiation from "Big Bang"
- 1965: Penzias \& Wilson discover Cosmic Microwave Background BIG BANG THEORY ADOPTED
- 1975: Computers: Big-Bang Nucleosynthesis ($75 \% \mathrm{H}, 25 \% \mathrm{He}$)
- 1985: Observations confirm BBN predictions
- 1992... CMB observatories: COBE, WMAP, Planck

1860: Herchsel's view of the Galaxy

Based on star counts in different directions along the Milky Way. (Absorption by interstellar dust was not yet known).

Our Galaxy

- Bulge, disk, globular clusters, spiral arms
- Stars move through the spiral arms.
- Diameter $\sim 50 \mathrm{kpc} ;$ Sun $\sim 8 \mathrm{kpc}$ from centre

Edge-on and Face-on Spirals

Our Galaxy: The Milky Way

Infrared observations let us see through (most of) the dust.

Measuring Distances to Stars

- Parallax: 2 measurements, 6 months apart

$d(\mathrm{pc})=1 / p\left({ }^{\prime \prime}\right)$
$1 \mathrm{AU} \sim 8$ light minutes.
$1 \mathrm{pc} \sim 3.2$ light years.
Range: limited by atmospheric effects to ~ 100 parsecs
Better results from space: Hipparcos: ~300 pc GAIA (2012): ~3 kpc
- Extragalactic distances: angles are very small so need another measuring technique

Standard Candles
$f=\frac{L}{4 \pi d^{2}} \quad$ and $\quad m_{1}-m_{2}=-2.5 \log f_{1} / f_{2}$

- Luminosity (energy/time) $=>$ absolute magnitude M
- Flux (energy/time/area) $=>$ apparent magnitude m
- Distance Modulus: $m-M=5 \log _{10}(d / \mathrm{pc})-5$
- $M=m$ for $d=10 \mathrm{pc}$
$m-M=5 \log _{10}(d / \mathrm{pc})-5$
- If we had lightbulbs of known wattage (blue $=500 \mathrm{~W}$, green $=250 \mathrm{~W}$, red $=100 \mathrm{~W}$) we could measure a flux and find the distance.
- Astronomy: We need sources with known luminosity ... Standard Candles.

How Many Stars in a Galaxy?
$L_{G}=N_{*} L_{*} \quad N_{*}=L_{G} / L_{*}=(100)^{(\Delta M / 5)}$
Compare absolute magnitudes:
Sun: $M_{V}=+5.6 \quad$ Milky Way: $M_{V}=-19.5$
$\Delta \mathrm{M}=(+5.6)-(-19.5)=25.1 \mathrm{mag}$
5 mags is flux ratio $100=10^{2}$
$25(=5 \times 5)$ mags is flux ratio $(100)^{5}=10^{10}$
Roughly 10^{10} stars in a bright spiral Galaxy.
In general: flux ratio is $(100)^{(\Delta \mathrm{M} / 5)}=10^{(\Delta \mathrm{M} / 2.5)}$

Cepheid Variable Stars as Standard Candles

- Well studied pulsating stars (physics understood)
- Very bright ($M_{V} \sim-2$)
- Pulsate regularly (\sim few days)
- Pulsation period P increases with luminosity L
- P-L relation is calibrated using Cepheids in star clusters of known distance
- (e.g. Cepheids in the Hyades cluster, whose distance is known from parallax)

The Period-Luminosity Relation
for Cepheids
Henrietta Leavitt (Harvard, 1912)

Example: Cepheid Distances

- A Cepheid is observed to pulsate with a period of 2.5 days. It has an apparent magnitude $\mathrm{m}_{\mathrm{V}}=18.6 \mathrm{mag}$ at peak. How far away is it?
USE: $\quad \log _{10} P+0.394 M_{V}=-0.657$
REARRANGE: $\quad M_{V}=\frac{-0.657-\log _{10}(P)}{0.394}$
EVALUATE: $\quad M_{V}=-2.68 \mathrm{mag}$
USE: $\quad m-M=5 \log _{10}(d)-5=18.6-(-2.68)=21.28 \mathrm{mag}$
REARRANGE: $\quad d=10^{(m-M+5) / 5}=10^{5.25} \mathrm{pc}$
EVALUATE: $\quad d=0.18 \mathrm{Mpc}$

The Distance to Andromeda

- Andromeda (M31) is 0.9 Mpc away.

What would be the apparent magnitude of a 3 day Cepheid ?
AS BEFORE:

$$
\begin{aligned}
& M_{V}=\frac{-0.657-\log _{10}(P)}{0.394} \\
& M_{V}=-2.88 \mathrm{mag} \\
& m=-2.88+5 \log _{10}\left(9 \times 10^{5}\right)-5 \\
& m=21.9 \mathrm{mag}
\end{aligned}
$$

Hubble needed a large telescope to find the M31 Cepheids: 100 "' Telescope on Mt Wilson

Local Group Trivia

- ~ 60 galaxies from $\mathrm{Mv}_{\mathrm{v}}=-21$ to $\mathrm{Mv}_{\mathrm{v}}=-6$ within 2 Mpc radius
- MW + M31 dominate the light and mass
- M31 is approaching us at about $85 \mathrm{~km} / \mathrm{s}$
- Collision expected in ~ 10 billion years !
- LG will eventually merge to form one giant elliptical galaxy
- LG is falling into the Virgo galaxy cluster

Milky Way/Andromeda Simulation

