AS1001:Extra-Galactic Astronomy

Lecture 2: Galaxy Morphology

Galaxy Morphology

- Hubble "Tuning Fork": 1929
- Hubble speculated that Ellipticals evolve into Spirals

The Hubble Tuning Fork

- Galaxies classified from "Early" to "Late" types.
- Ellipticals = Early type. Spirals = Late type.
- Not an evolutionary sequence:
- -- Ellipticals don't evolve into Spirals because an isolated galaxy cannot spontaneously start to rotate!
- Spirals divided (S, SB) SB = presence of a bar.
- Spiral "lateness" (Sa, Sb, Sc, Sd) determined by the bulge-to-disk ratio and the tightness of the spiral arms

Three Generic Galaxy Types

• Ellipticals: E0 - E7

- En where n = 10 (a-b) / a (a=major and b=minor axis)
- S0 or Lenticular: A transition class:
 elliptical but with a faint disk just visible.

• Spirals: Sa, Sb, Sc, Sd Barred: SBa ... SBd

- Sa = dominant Bulge, tightly wound arms
- Sb = obvious Bulge, more open arms
- Sc = faint Bulge, very open spiral arms
- Sd = no Bulge, diffuse arms

• Irregulars: Irr, Im

- Im = Magellanic. Small, no bulge, asymmetrical

Large Magellanic Cloud

Elliptical

- Red
- Smooth profile
- High Surface Brightness
- Ellipsoid, no Disk
- No net rotation
- Little or no Dust/Gas
- Absorption Lines only
- Many Globular Clusters
- Found in Clusters
- Bright: $-22 < M_V < -18$

Elliptical

- Red colour
- Smooth profile
- High Surface Brightness
- Ellipsoid, no Disk
- No net rotation
- Little or no Dust/Gas
- Absorption Lines only
- Many Globular Clusters
- Found in Clusters
- Bright: $-22 < M_V < -18$

- ⇒ Old long-lived stars
- ⇒ Randomly-oriented orbits
- ⇒ Densely packed
- ⇒ Low angular momentum thus formed via mergers
- ⇒ Dust and gas used up
- ⇒ No current star-formation
- ⇒ Formed via mergers
- ⇒ Formed via mergers
- \Rightarrow Massive (~10¹⁰ stars)

Spirals

- Red bulge
- Bluish Arms/Disk
- Moderate Surface Brightness
- Dust and Gas in Disk
- Emission+Absorption lines
- Rotating Disk
- Many Globular Clusters
- Found in both low and high density environments
- Bright: $-21 < M_V < -17$

Spirals

- Red bulge
- Bluish Arms/Disk
- Dust and Gas in Disk
- Emission+Absorption lines \Rightarrow SF is ongoing
- Rotating Disk
- Many Globular Clusters
- Found in both low and high density environments
- Bright: $-21 < M_{_{V}} < -17$

- ⇒ Central bulge is old
- ⇒ Disk stars: old and young
- Moderate Surface Brightness ⇒ Lower star density
 - ⇒ Star Formation can occur

 - ⇒ Form by collapse of gas with angular momentum
 - + some merging
 - ⇒ Collapse + merging
 - \Rightarrow Massive $\sim 10^{10}$ stars

Irregulars

- Blue (usually)
- Strong Emission lines
- Dust and Gas
- Low surface brightness
- Asymmetrical
- Rotating
- Few Globular clusters
- Typically: $-18 < M_V < -10$

Irregulars

- Blue (usually)
- Strong Emission lines
- Dust and Gas
- Low surface brightness
- Asymmetrical
- Rotating
- Few Globular clusters
- Typically: $-18 < M_V < -10$

- ⇒ Young stellar population
- ⇒ Star Formation ongoing
- ⇒ SF will continue
- ⇒ SF just starting
- \Rightarrow Due to small size
- ⇒ Formed via collapse
- ⇒ Formed via collapse
- \Rightarrow Low mass ($<10^8$ stars)

Other Galaxy Types

- Globular Clusters
 - $\sim 10^5 10^6 \text{ stars}$
 - Spherical, old stars,
 - no dust
- Dwarf Galaxies
 - $\sim 10^6 10^8 \, stars$
 - Dwarf Ellipticals
 - Dwarf Irregulars
 - Dwarf Spheroidals
- Low Surface Brightness Galaxies (LSBGs)
 - large diffuse galaxies
 - hard to find

Spiral Galaxy Components

- Ingredients (%Mass):
 - Dark Matter (∼90%)
 - MACHOs (Massive Compact Halo Objects) ruled out by gravitational lensing surveys.
 - WIMPs (Weakly Interacting Massive Particles) – LHC may (or may not) produce them
 - Stars (~9%)
 - Gas (~1%)
- Structures:
 - Halo (DM+stars)
 - Bulge (stars)
 - Disk (stars+gas)
 - Bars/Spiral Arms (wave patterns)

- Disk Components
 - Giant Molecular Clouds
 - Dust lanes
 - HII regions
 - Open clusters
- Halo Components
 - Globular Clusters
 - Dwarf companions
 - Tidal streams
 - Polar rings

The Magellanic Stream

The Magellanic Stream

Radio map in 21cm emission line (electron spin flip) of neutral Hydrogen gas (H I)

LMC and SMC on left, tidal stream of gas and stars stretches 1/3 of the way across sky as seen from Earth

Mary Putman

Polar Ring Galaxies

Debris (stars and gas) left over from collision with another galaxy.

Why are Ellipticals red?

- A galaxy's light is dominated by the stars.
- Spectrum of a galaxy = Sum of stellar spectra
- Stellar spectra ~ Black body, i.e.,

Hot, high-mass, short-lived star

long-lived star

An Elliptical Galaxy Spectrum

• A galaxy spectrum is the sum of many stellar spectra. If relatively few blue stars, the overall spectrum is red:

Note red bulges, blue disks, bars, arms

