AS1001:Extra-Galactic Astronomy

Lecture 4: Galaxy Spectra

The Continuum

- The combination of many Black-Body spectra from stars spanning a range in temperatures

- Red colour => lack of blue (hot young) stars => old stellar population
- Blue colour $=>$ ongoing star formation

Galaxy Spectra

- The combined light from $\sim 10^{10}$ stars plus many molecular clouds and star-forming regions.
- The spectra tell us:
- The galaxy's velocity (or redshift, hence distance)
- The mass (from internal velocities)
- The star-formation rate (emission lines)
- The average age of the stellar population (blue/red)
- 3 Aspects of Spectra:
- Continuum
- Absorption Lines
- Emission Lines

Absorption Lines

- Atoms/Molecules in a star's atmosphere absorb light at specific wavelengths

- Cold gas in the interstellar medium (ISM) absorbs light at specific wavelengths.
- (ISM's cold dust absorbs $\sim 1 \mathrm{mag} / \mathrm{kpc}$)

Emission Lines

- Young stars are initially embedded in gas.
- Hot (high-mass) young stars ionise nearby gas.
- Gas emits at specific wavelengths as the free electrons recombine.

Hydrogen Energy Levels

Ionisation Potential $\mathrm{h} v=13.6 \mathrm{eV}$
$\lambda=912$ Angstroms
UV photons ionise.
Recombinations then produce emission lines

$$
\frac{1}{\lambda}=R\left(\frac{1}{n_{l}^{2}}-\frac{1}{n_{u}^{2}}\right)
$$

$R=1.097 \times 10^{7} \mathrm{~m}^{-1}$
$=1 /(912 \mathrm{~A})$ $H \alpha: n_{u}=3 \quad n_{l}=2$

Rydberg Formula for Hydrogen Lines

$$
\frac{1}{\lambda}=R_{\infty}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

H α map of Milky Way's Ionised Gas
Gas layer $\sim 1 \mathrm{kpc}$ thick. Ionized by $\mathrm{O} \& \mathrm{~B}$ stars in the Galactic disc.

Absorption / Emission Lines

- Absorption Lines
- hot: H, He cool: metals
- Formed by atoms $/$ molecules absorbing light
- in stellar atmospheres
- by cold gas in the ISM
- Implies
- Metal lines from cool stars
\Rightarrow old stellar population
\Rightarrow old galaxy
- From
- Ellipticals
- Spiral Bulges
- Emission Lines
- Gas ionised by UV photons from nearby O and B type stars
- Implies
- Newly formed stars
=> star-forming ongoing
=> young galaxy
- From
- Spiral Disks
- Irregulars

Example Spectrum: Elliptical

The "4000A-break"

- 4000 Angstrom $=400 \mathrm{~nm}$
- Caused by:
- Absorption (many overlapping lines with $\lambda<4000 \mathrm{~A}$) by metals in the atmospheres of cooler stars
- lack of hot blue stars (type O,B)
- Hence:
- Ellipticals => Strong 4000A-Break
- Spirals $\quad=$ Weak 4000A-Break
- Irregulars $=>$ Little or no 4000A-Break

Radial Velocities

- Most galaxy spectra are REDSHIFTED.
- Observed wavelengths of spectral lines are longer than wavelengths measured for gasses in the lab.
- Interpret this as a DOPPLER shift.
- Most galaxies are moving away.
- $\mathrm{v}>0$: RECEDING
- $\mathrm{v}<0$: APPROACHING
- $\mathrm{z}=$ redshift $(\mathrm{z}=\mathrm{v} / \mathrm{c}$ for $\mathrm{z} \ll 1)$
- Distance from Hubble's law: $\mathrm{d}=\mathrm{v} / \mathrm{H}_{0}\left(\mathrm{H}_{0}=72 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}\right)$

$$
\frac{\lambda_{\text {OBSERVED }}}{\lambda_{\text {LAB }}} \equiv 1+z=1+\frac{\mathrm{v}}{\mathrm{c}} \quad \text { or } \quad z=\frac{\Delta \lambda}{\lambda}=\frac{\mathrm{v}}{c}
$$

CLASS EXERCISE

- Work in groups of 2-3
- Collect an example spectrum
- Identify spectral features
- Measure the wavelengths of the spectral lines
- Calculate the radial velocity (km / s)
- Use Hubble's law $\left(\mathrm{d}=\mathrm{H}_{0} \mathrm{v}\right)$ to find the distance ($\mathrm{H}_{0}=72 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$)

Typical Spectral Features

$$
\begin{aligned}
\text { - Absorption } & \\
-\mathrm{CaII}(\mathrm{~K}) & =3933.7 \mathrm{~A} \\
-\mathrm{Ca} \mathrm{II}(\mathrm{H}) & =3968.5 \mathrm{~A} \\
-\mathrm{G}-\mathrm{band} & =4304.4 \mathrm{~A} \\
-\mathrm{Mg} \mathrm{I} & =5175.3 \mathrm{~A} \\
-\mathrm{Na} \mathrm{I} & =5894.0 \mathrm{~A}
\end{aligned}
$$

1 Angstrom $=0.1 \mathrm{~nm}=10^{-10} \mathrm{~m}$

- Emission
$-[\mathrm{O} \mathrm{II}]=3726.7 \mathrm{~A}$
- $\mathrm{H} \delta \quad=4101.7 \mathrm{~A}$
$-\mathrm{H} \gamma=4340.5 \mathrm{~A}$
$-\mathrm{H} \beta=4861.3 \mathrm{~A}$
$-[\mathrm{O} \mathrm{III}]=4958.9 \mathrm{~A}$
$-[\mathrm{O} \mathrm{III}]=5006.8 \mathrm{~A}$
$-\mathrm{H} \alpha=6562.8 \mathrm{~A}$
$-[\mathrm{S} \mathrm{II}]=6716.0 \mathrm{~A}$

