A S 3012 **Exoplanetary**

Science

Keith Horne

Ian Bonnell

(iab1) Room 312

AS 3012: Exoplanetary Science

Young and rapidly developing subject: 1995: first exoplanet around an ordinary star (Mayor & Queloz). 2010: > 350 exoplanets known (~30 found by our WASP and microlensing teams)

Observations: (Keith Horne) ~ 6 lectures Theory: (Ian Bonnell) ~12 lectures

Detection Techniques and Characteristics of the Planet Population

- · How do we discover extrasolar planets?
- What can we learn about them?
- · Characteristics of the exoplanet population. · Tests of planet formation/migration theories.

Resources

Observations: good starting points on the web: Extrasolar Planets Encyclopedia http://exoplanet.eu/ Berkeley Search for Extrasolar Planets http://exoplanets.org/

Theory: Annual Reviews article by Lissauer (1993) is a good summary of the state of theory prior to exoplanets. Lecture notes on the formation and early evolution of planets by Philip Armitage (astro-ph/0701485)

Lecture slides to be posted at

http://star-www.st-and.ac.uk/~kdh1/esp/esp.html

Paper for next Tue: Mayor, M. et al. 2009 A&A 493, 639. HARPS search for Southern Exoplanets XIII: A planetary system with 3 Super Earths

Motivational Questions

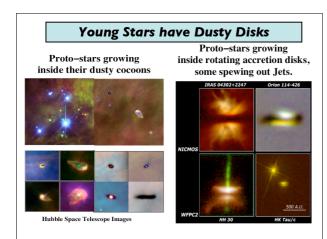
Where did we come from?

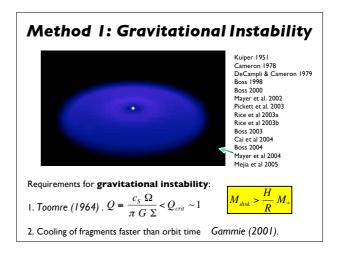
How did: The Universe, Galaxies, Stars, Planets, Life, Intelligence form and evolve ?

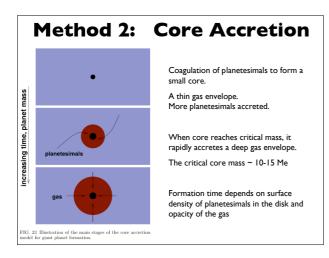
> Are there Other Earths? How far away? Do they harbour Life? Are we alone?

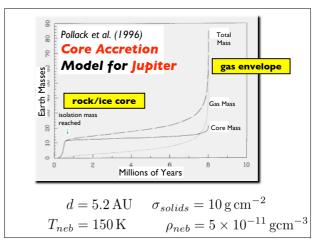
Planet Formation Theory (~1995) based on Solar System Planets

.


Co-planar circular orbits Inner planets : **small, rocky** Mercury, Venus, Earth, Mars


N.

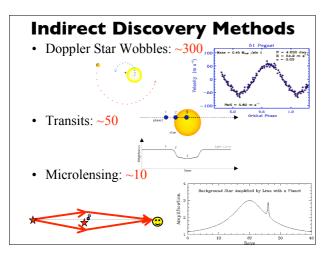

6

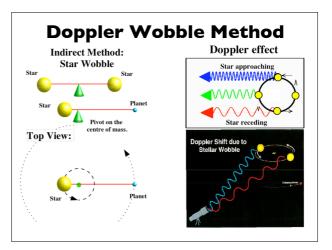

Outer planets : gas giants Jupiter, Saturn, Uranus, Neptune Debris: Moons, Asteroids, Comets, Pluto (and other Kijper-belt objects)

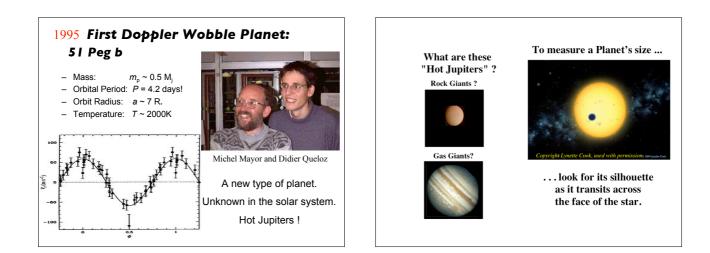
Planets form in a thin proto-stellar disk by concentrating dust (and later gas) Gas giants form outside the "Snow Line" (a > 4 AU, T < 170K) where dust grains have ice mantles (H_2O , NH_3 , CH_4) (Snowballs easy to form, but "sandballs" harder.)

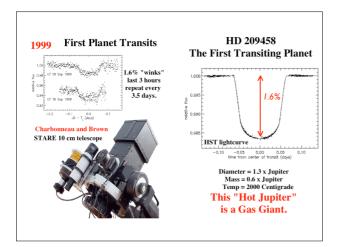
The Exo-Planet Discovery Era

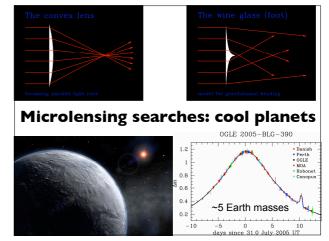
- 1995 first extra-solar planets
 - (51 Peg) Hot Jupiters!
- 2009 ~330 exo-planets known
- 2005-10 first Hot and Cool exo-Earths
- 2010-15 Habitable Earths -- common or rare?
- 2020-30 Extra-solar Life? Are we alone?

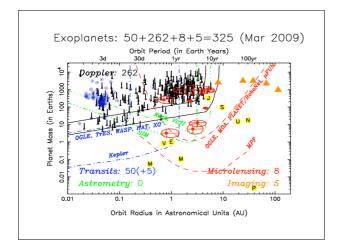

Two Classes of Planet Discovery Methods

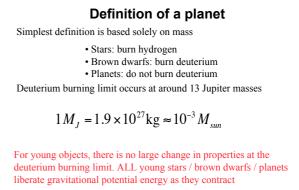

Direct detection:

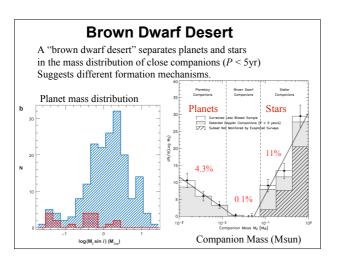

- Detect light from the planet.
- 1) starlight reflected from the planet
- 2) thermal radiation emitted by the planet

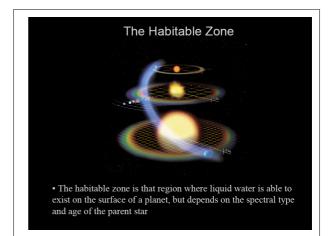

Indirect detection:

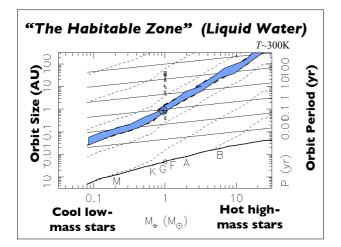

- Detect effect of planet on light from a star.
- 1) Stellar wobble (astrometry, radial velocity)
- 2) Transits (planet in edge-on orbit occults stellar surface)
- 3) Microlensing (planet's gravity deflects background starlight)

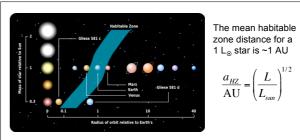


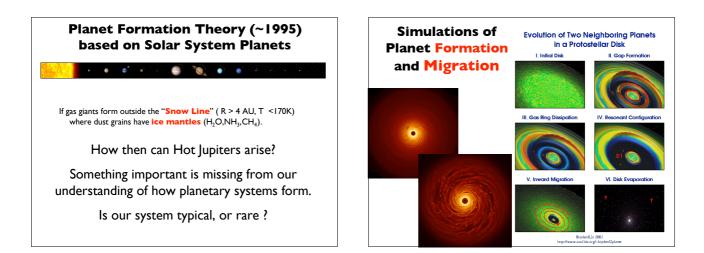


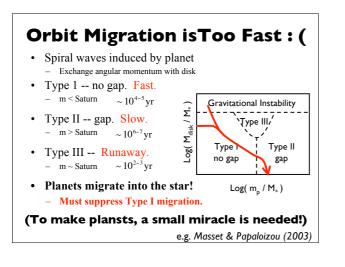


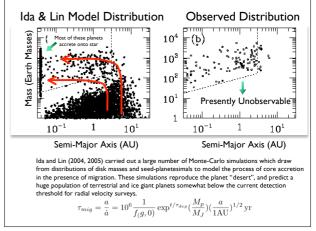


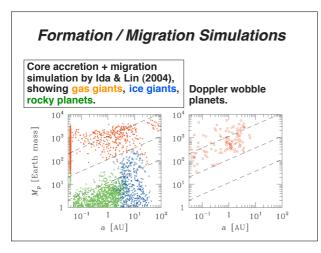


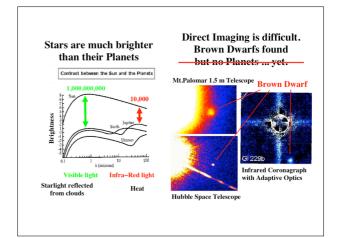


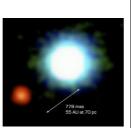







Planets around Gliese 581:


Gliese 581 is M2.5V (0.3 Msun red dwarf star) 6 pc from Earth. The star, with T~3500 K (L=0.013 L_{\odot}), is much cooler and less luminous than the Sun. Its habitable zone is much closer to the star.


2005: Direct Imaging (with Adaptive Optics)

2MASSW J1207334-393254 young brown dwarf (mass~70 $M_{\rm j})$ companion (mass ~ 5 $M_{\rm j})$

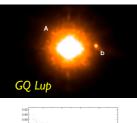
Detectable because:

(1) brown dwarf (T~2950K) much cooler and fainter than the Sun

(2) Companion quite far from the brown dwarf (~55 AU – beyond the orbit of Pluto)

First directly detected exoplanet -- How do we know it is a planet? Do planets form differently than stars and brown dwarfs or are they just less massive -- but form in the same way?

Direct Imaging HARD!

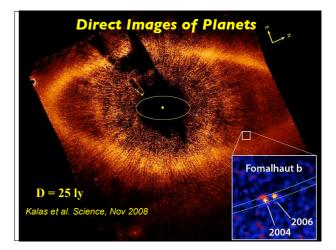

Extreme Adaptive Optics Coronography Nulling Interferometry

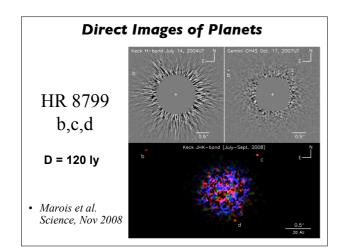
Target dim stars: white dwarfs, brown dwarfs for faint companions with common proper motion

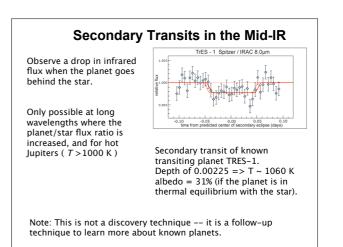
GQ Lup: 22 mj 100 AU

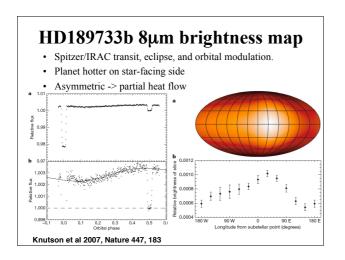
AB Pic : 14 m₁ 280 AU

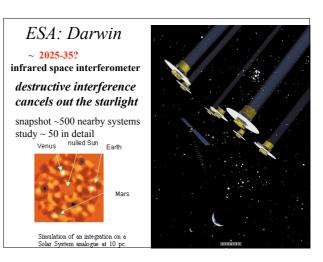
2MI207: 5 m₁ 55 AU




fs	0.00 0.04 0.04 0.02 0.02 0.02			
on	0.78 0.76 0.72 0.72 0.70 Apr. 1999	Jul 2002	Jan. Sep. 2004	
Neuh	aeuser et al. 2005	en GQ Lupi and Ibaru, HST)	f its Companion	-6


Chauvin et al. 2005


Chauvin et al. 2005


Blocking Stellar Light				
Nulling Interferometry	Coronographic telescope			
 Use destructive interference to "cancel" the light of the star ESA's Darwin, NASA's TPF-1 (Terrestrial Planet Finder – Interferometry) 	Simulation of a mid-IR image from a space-based coronagraphic telescope of an Earth-like planet orbiting a Sun- like star at a distance of 8 ly.			

