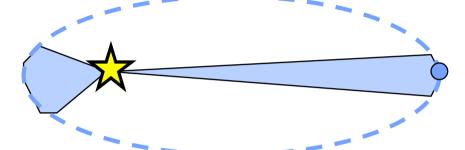
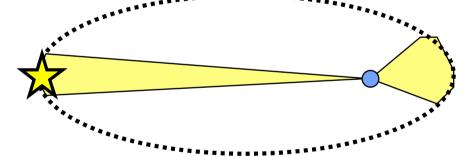
### **Exoplanet Discovery Methods**

(1) Direct imaging

Today: Star Wobbles


- (2) Astrometry  $\rightarrow$  position
- (3) Radial velocity → velocity

Later:


- (4) Transits
- (5) Gravitational microlensing
- (6) Pulsar timing

# Kepler Orbits

Star's view:



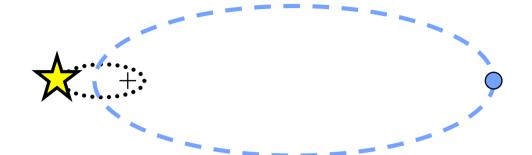
Planet's view:



**Inertial Frame:** 



**Kepler 1:** Planet orbit is an *ellipse with star at one focus* (Newton showed this is due to gravity's inverse-square law).


**Kepler 2:** Planet seeps out *equal area in equal time* (angular momentum conservation).

Planet at the focus.

Star sweeps equal area in equal time

Star and planet both orbit around the *centre of mass*.

## Kepler Orbits



$$M = M_* + m_p = \text{total mass}$$

$$a = a_p + a_* = \text{semi} - \text{major axis}$$

$$a_p m_p = a_* M_* = a M$$
 Centre of Mass

P =orbit period

$$a^3 = G M \left(\frac{P}{2\pi}\right)^2$$
 Kepler's 3rd Law



$$e = \frac{a - b}{a} = \text{eccentricity}$$
 0 = circular 1 = parabolic

## **Astrometry**

- Look for a periodic "wobble" in the *angular position* of host star
- Light from the star+planet is dominated by star
- Measure star's motion in the plane of the sky due to the orbiting planet
- Must correct measurements for *parallax* and *proper motion* of star
- *Doppler* (radial velocity) more sensitive to planets *close to the star*
- Astrometry more sensitive to planets far from the star

Stellar wobble: Star and planet orbit around centre of mass. Radius of star's orbit scales with planet's mass:

$$\frac{a_*}{a} = \frac{m_p}{M_* + m_p} \qquad \frac{a_p}{a} = \frac{M_*}{M_* + m_p}$$

Angular displacement for a star at distance *d*:

$$\Delta\theta = \frac{a_*}{d} \approx \left(\frac{m_p}{M_*}\right) \left(\frac{a}{d}\right)$$

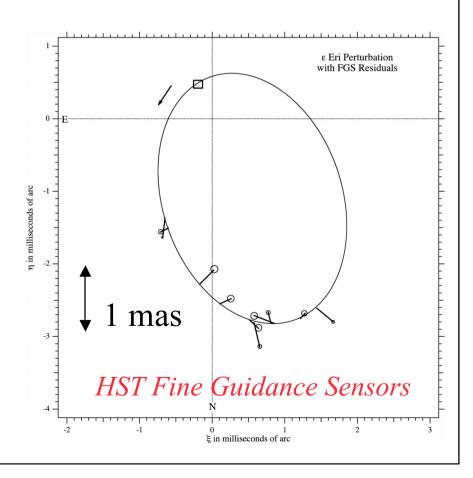
(Assumes small angles and  $m_p \ll M_*$ )

Scaling to Jupiter and the Sun, this gives:

$$\Delta\theta \approx 0.5 \left(\frac{m_p}{\rm m_J}\right) \left(\frac{M_*}{\rm M_{sun}}\right)^{-1} \left(\frac{a}{\rm 5AU}\right) \left(\frac{d}{\rm 10pc}\right)^{-1}$$
 mas

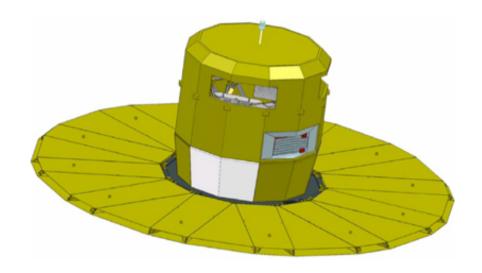
Note:

- Units are milliarcseconds -> very small effect
- Amplitude increases at large orbital separation, a
- Amplitude decreases with distance to star *d*.
- •Detecting planets at large orbital radii requires a **long** search time, comparable to the orbital period.


$$\frac{P}{\text{yr}} = \left(\frac{M_*}{M_{sun}}\right)^{-1/2} \left(\frac{a}{\text{AU}}\right)^{2/3}$$

## 2020 1960 1970 0.001 2005 2015 (2000 2025

The wobble of the Sun's projected position due to the influence of all the planets as seen from 10 pc


#### Epsilon Eridani

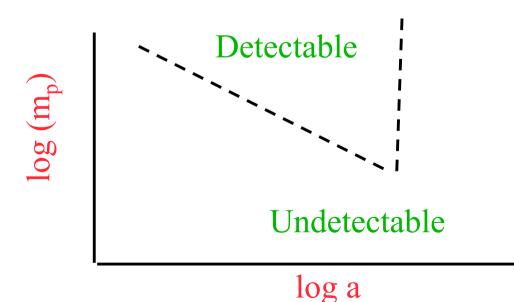
Data obtained 1980-2006 to track the orbit  $P = 6.9 \text{ yr}, \ m_p = 1.55 \text{ M}_J$ 



### Future Astrometric Experiments



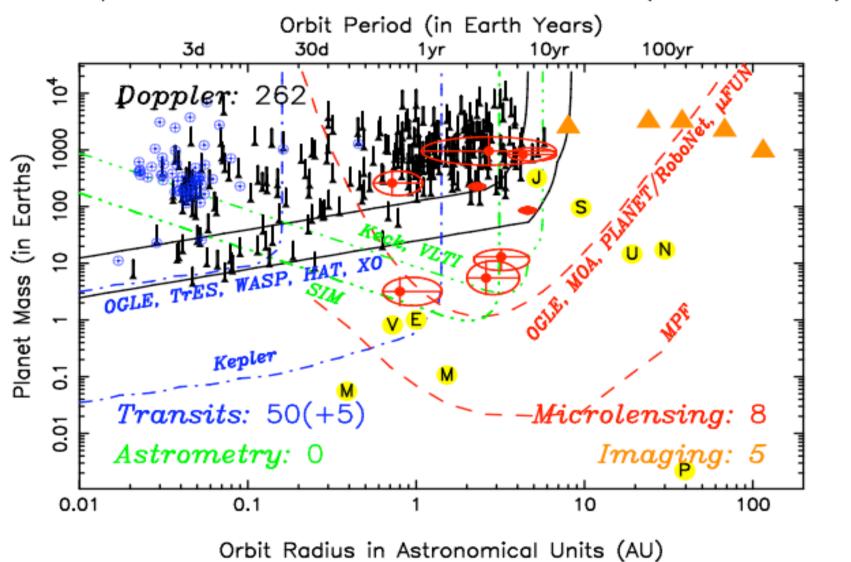



- PRIMA on VLT Interferometer (Paranal, Chile)
- ESA's GAIA (2011 launch) and NASA's SIM (not yet funded)
- Planned astrometric errors ~10 micro-arcsecond
- May detect planets of a few Earth masses at 1 AU around nearby stars

## Astrometry Selection Function

Need to observe (most of) a full orbit of the planet: No discovery for planets with  $P > P_{survey}$ 

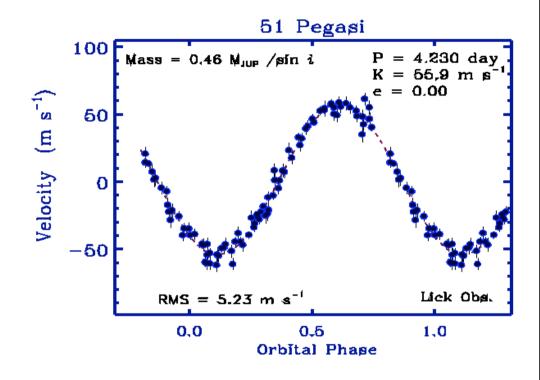
For P < P<sub>survey</sub>, planet detection requires a star wobble several times larger than the accuracy of the measurements. ==> minimum detectable planet mass.


Planet mass sensitivity as a function of orbital separation



$$\Delta \theta = \frac{a_*}{d} \approx \left(\frac{m_p}{M_*}\right) \left(\frac{a}{d}\right)$$

$$m_p \propto a^{-1}$$


#### Exoplanets: 50+262+8+5=325 (Mar 2009)



### Doppler Wobbles: Radial Velocity

#### Periodic variations in the Radial Velocity of the Host Star

- Most successful method:>300 planets detected
- The first planet around a normal star, 51 Peg, was detected by doppler wobbles in 1995.
- Doppler shift of starlight caused by the star orbiting the center of mass with 1 or more orbiting planets



# Star's Orbit Velocity



Centre of mass

Consider first a circular orbit.

Velocities: 
$$V_* = (2\pi a_*)/P$$
  $V_p = (2\pi a_p)/P$ 

Conservation of momentum:  $M_* V_* = m_p V_p$  thus  $M_* a_* = m_p a_p$ 

Kepler's 3rd Law: 
$$a^3 = G M (P/2\pi)^2$$
  $M = M_* + m_p$ 

$$V_* = \frac{2\pi \, a_*}{P} = \frac{2\pi \, m_p}{P} \, a = \frac{2\pi \, m_p}{M} \, a = \frac{2\pi \, m_p}{M} \left( G \, M \left( \frac{P}{2\pi} \right)^2 \right)^{1/3} = m_p \left( \frac{2\pi \, G}{P \, M^2} \right)^{1/3}$$

# Star's Orbit Velocity



Centre of mass

Kepler's law applies for V = relative velocity, M = total mass

$$\frac{V^2}{a} = \frac{GM}{a^2} \implies V = \left(\frac{GM}{a}\right)^{1/2} = \frac{2\pi a}{P} \qquad M \equiv M_* + m_p$$

$$V_* = \frac{a_*}{a} V = \frac{m_p}{M} \left(\frac{GM}{a}\right)^{1/2} = m_p \left(\frac{G}{aM}\right)^{1/2}$$

Star's centrifugal acceleration due to planet's gravity:

$$\frac{{V_*}^2}{{a_*}} = \frac{Gm_p}{a^2} \implies V_* = \left(\frac{Gm_p}{a^2}a_*\right)^{1/2} = \left(\frac{Gm_p}{a^2}\left(\frac{am_p}{M}\right)\right)^{1/2} = m_p\left(\frac{G}{aM}\right)^{1/2}$$

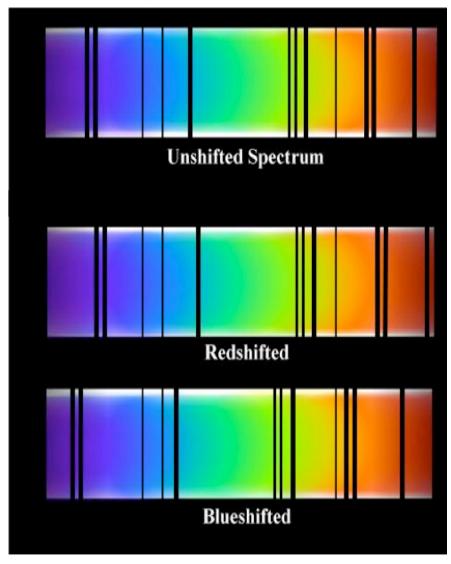
## Star's Orbit Velocity

From Kepler's Law and  $a_* M_* = a_p m_p$  (center of mass), The star's velocity is:

$$V_* \approx \left(\frac{m_p}{M}\right) \sqrt{\frac{GM}{a}} \qquad M \equiv M_* + m_p \approx M_*$$

Star's velocity scales with planet's mass.

Hot Jupiter (P = 5 days) orbiting a 1 M<sub>sun</sub> star: 125 m/s


Jupiter orbiting the Sun: 12.5 m/s

Sun due to Earth: 0.1 m/s

Thermal velocity width of spectral lines  $\sim 10$  km/s  $(T/10^4\text{K})^{1/2}$ 

Special techniques and spectrographs needed to measure such tiny radial velocity shifts stably over many years.

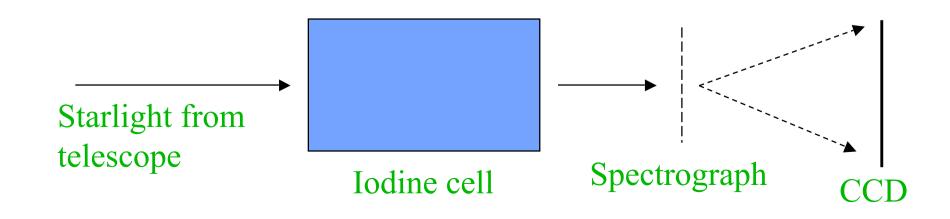
#### **Spectra of Stars**



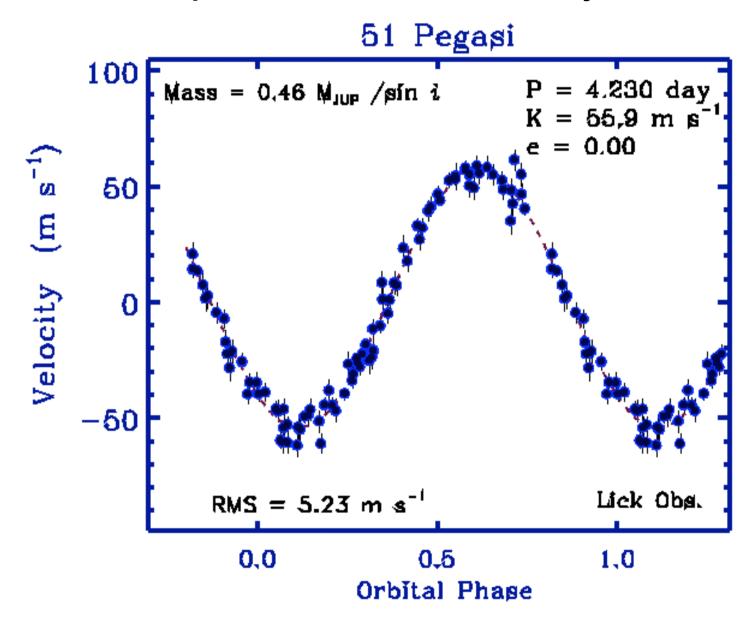
### **Key Technology:**

#### **Iodine Gas Cell**




Pass the starlight through an Iodine Cell and then into a Spectrograph

High sensitivity to small radial velocity shifts:


- Achieved by comparing high  $S/N \sim 200$  spectra with template stellar spectra
- Large number of lines in spectrum allows shifts of much less than one pixel to be determined

Absolute wavelength calibration and stability over long timescales:

- Achieved by passing stellar light through a cell containing iodine, imprinting large number of additional lines of known wavelength into the spectrum.
- Calibration suffers identical instrumental distortions as the data

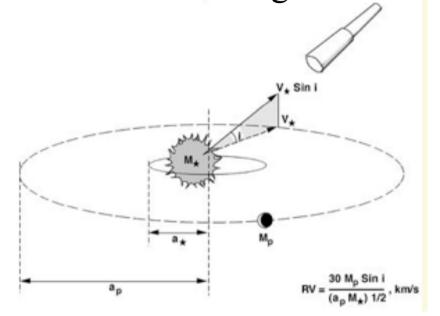


### Examples of radial velocity data



51 Peg b, the first known exoplanet, with a 4.2 day circular orbit.

## Orbital inclination => lower limits


The *observed* velocity is component along the line of sight, thus reduced by the sine of the orbit's inclination angle :

$$V_{obs} = V_* \sin(i)$$

With

$$V_* \approx \left(\frac{m_p}{M_*}\right) \sqrt{\frac{G M_*}{a}}$$

The measured quantity is:  $m_p \sin(i)$ 



(assuming M<sub>\*</sub> is well determined e.g. from spectral type)

 $V_{\rm obs}$  gives us  $m_p \sin(i)$ , a **lower limit** on the planetary mass, if there are no other constraints on the inclination angle.

#### Error sources

- (1) Theoretical: photon noise limit
  - flux in a pixel that receives N photons uncertain by  $\sim N^{1/2}$
  - implies absolute limit to measurement of radial velocity
  - depends on spectral type more lines improve signal
  - < 1 m/s for a G-type main sequence star with spectrum recorded at S/N=200
  - practically, S/N=200 can be achieved for V=8 stars on a 3m class telescope in survey mode
- (2) Practical:
  - stellar activity young or otherwise active stars are not stable at the m/s level
  - remaining systematic errors in the observations

Currently, best observations achieve:

Best RV precision ~ 1 m/s

...in a single measurement. Allowing for the detection of low mass planets with peak Vobs amplitudes of  $\sim 3$  m/s

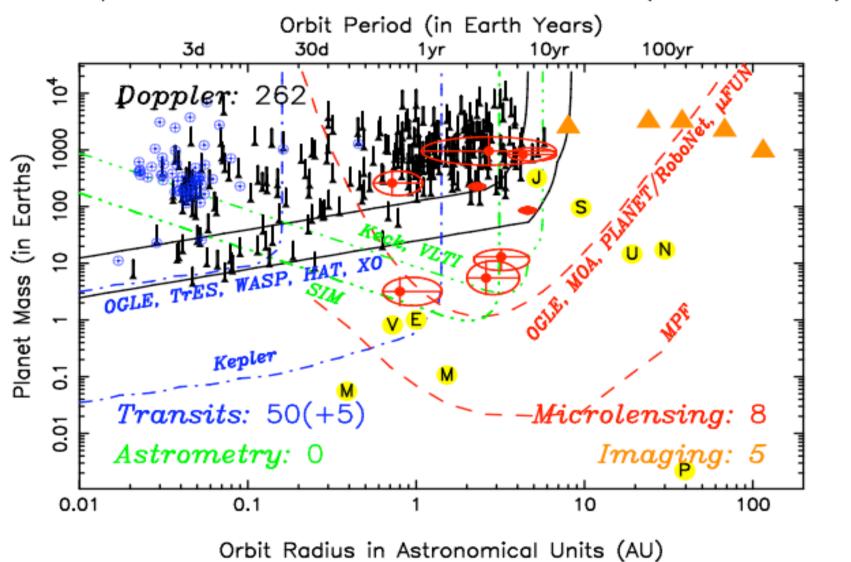
HD 40307, with a radial velocity amplitude of  $\sim 2$  m/s, has the smallest amplitude wobble so far attributed to a planet.

Radial velocity monitoring detects massive planets (gas giants, especially those at small a. It is now also detecting super-Earth mass planets (<  $10\ M_{\rm E}$ )

### Selection Function

Need to observe (most of) a full orbit of the planet: No discovery for planets with  $P > P_{survey}$ 

For P < P<sub>survey</sub>, planet detection requires a star wobble Vobs several times larger than the accuracy of the measurements. ==> minimum mass of detectable planet.


Planet mass sensitivity as a function of orbital separation

log a

$$V_* \approx \left(\frac{m_p}{M_*}\right) \sqrt{\frac{GM_*}{a}}$$

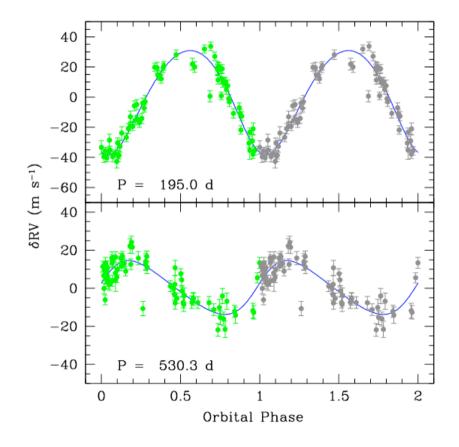
$$m_p \sin(i) \propto a^{1/2}$$

#### Exoplanets: 50+262+8+5=325 (Mar 2009)

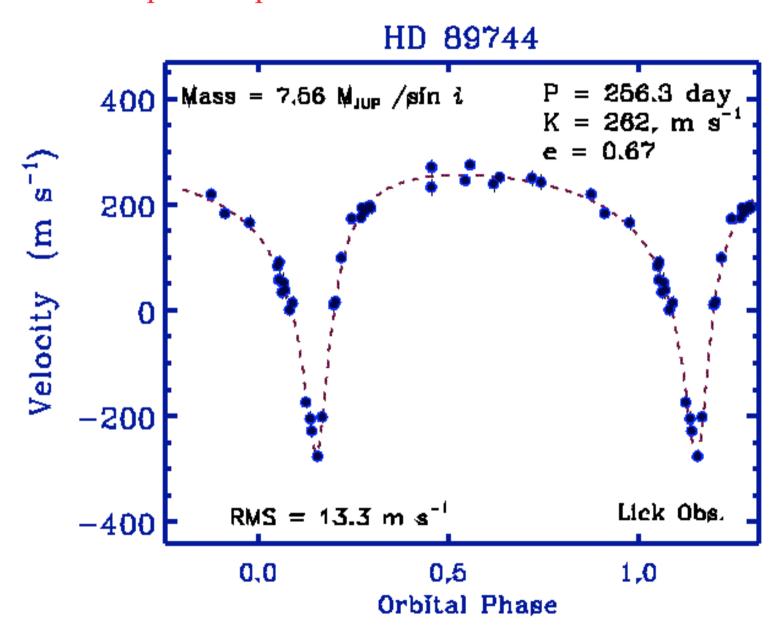


## **Eccentric Orbits**

Circular orbit: velocity curve is a sine wave.


Elliptical orbit: velocity curve more complicated,

but still varies periodically.


Eccentric orbit:

$$V_{rad} = \frac{2\pi a sin(i)}{P(1 - e^2)^{1/2}} [cos(\theta - \omega) + ecos(\omega)]$$

Circular orbit:  $e \rightarrow 0, \omega \rightarrow 0$ 

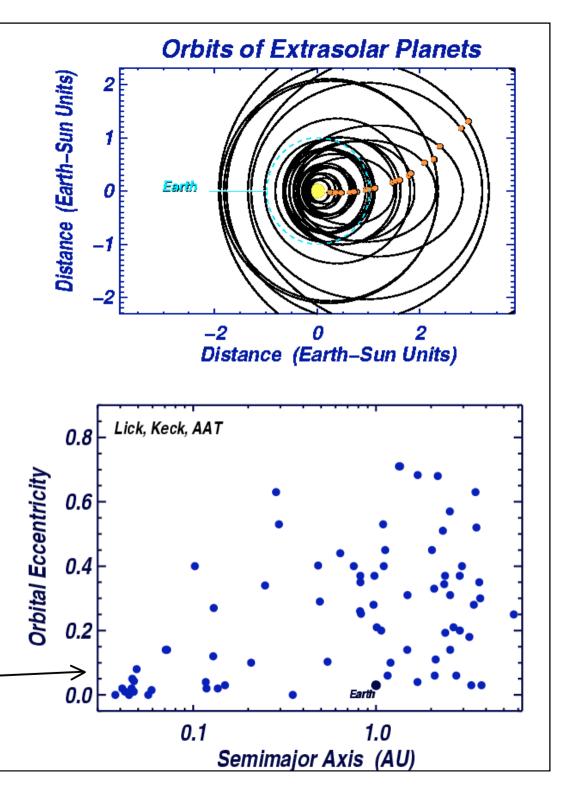


#### Example of a planet with an eccentric orbit: e=0.67



# Eccentric (non-circular) Orbits

# Not yet well understood.

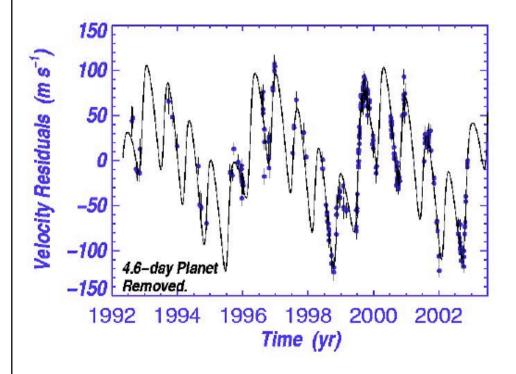

Early star-star encounters?

Planet-planet interactions?

Eccentricity pumping.

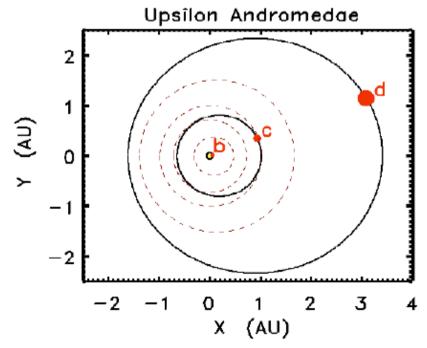
Small planets ejected?

Tidal circularisation.




## A planetary system with 3 gas giants

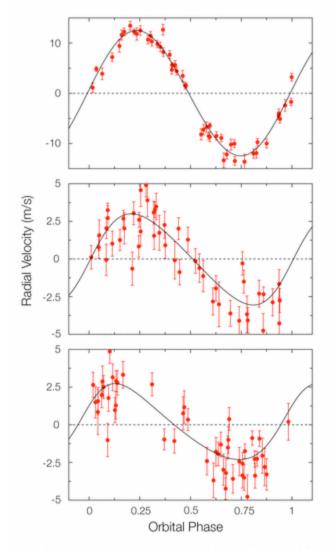
Planet b: 0.059 AU, 0.72 M<sub>J</sub> e=0.04 Planet c: 0.83 AU, 1.98 M<sub>J</sub>, e=0.23


Planet d: 2.5 AU, 4.1 M<sub>I</sub>, e=0.36





Upsilon And: F8V star M<sub>\*</sub>=1.28 Msun


Teff=6100 K



## A system of "super Earths"

- 22 planets discovered with  $m_p < 30 M_E$
- 9 super-Earths (2  $M_E < m_p < 10 M_E$ )
- Found at a range of orbital separations:
  - Microlensing detection of 5.5 M<sub>E</sub> at 2.9 AU
  - RV detections at P~ few days to few hundred days
- 80% are found in multi-planet systems

Bonfils, et al. 2005 Udry, et al. 2007



Observed Velocity Variation of Gliese 581

## Summary

#### Observables:

- (1) Planet mass, up to an uncertainty from the normally unknown inclination of the orbit. Measure  $m_p \sin(i)$
- (2) Orbital period -> radius of the orbit given the stellar mass
- (3) Eccentricity of the orbit

#### **Current limits:**

- Maximum  $\sim 6$  AU (ie orbital period  $\sim 15$  years)
- Minimum mass set by activity level of the star:
  - $\sim 0.5 M_J$  at 1 AU for a typical star
  - 4 M<sub>E</sub> for short period planet around low-activity star
- No strong selection bias in favour / against detecting planets with different eccentricities