Paper Due Tue, Feb 23

Seager \& Mallen-Ornelas 2003 ApJ 585, 1038.
"A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve"

Exoplanet Discovery Methods

(1) Direct imaging
(2) Astrometry \rightarrow position
(3) Radial velocity \rightarrow velocity

Today:
(4) Transits

Later:
(5) Gravitational microlensing
(6) Pulsar timing

Transits

Simplest method: look for drop in stellar flux due to a planet transiting across the stellar disc

Venus Transit in 2004

International Space Station and Space Shuttle crossing the disk of the Sun

[^0]

HD 209458

Transits HST/STIS

Brown et al. (2001)
$P=3.52 \mathrm{~d} \quad a=0.046 \mathrm{AU}$
$m_{V}=7.8$
$\Delta f / f=0.017 \mathrm{mag}(1.6 \%)$
$i=86^{\circ} .6 \pm 0^{\circ} .2$
$r_{p}=1.35 \pm 0.06 \mathrm{r}_{\mathrm{J}}$
From radial velocities
$m \sin i=0.69 \mathrm{~m}_{\mathrm{J}}$
\Rightarrow "bloated" gas giant

What fraction of the star's disk does the planet cover?

$$
\frac{\Delta f}{f} \approx\left(\frac{r_{p}}{R_{*}}\right)^{2}=0.01\left(\frac{r_{p}}{r_{\text {Jup }}}\right)^{2}\left(\frac{R_{*}}{R_{\text {sun }}}\right)^{-2}
$$

Find star radius from its spectral type. Observed depth tells us planet's radius.

Transit Duration ($i<90^{\circ}$)

Transit duration reduces to 0 as orbit tips away from edge-on.

For $\cos \mathrm{i} \ll 1$ this becomes:

$$
t_{T}=\frac{P R_{*}}{\pi a} \sqrt{\left(1+\frac{R_{p}}{R_{*}}\right)^{2}-\left(\frac{a}{R_{*}} \cos i\right)^{2}} .
$$

Transits occur only in nearly edge-on orbits: $a \cos i \leq R_{*}+R_{p}$ Random orbit orientation -> probability uniform in $\cos (i)$.
Transit probability is then: $\operatorname{Prob}\left(\cos \mathrm{i}<\frac{R_{*}+R_{p}}{a}\right)=\frac{R_{*}+R_{p}}{a} \approx \frac{R_{*}}{a}$

[^1]
Transit Duration ($i=90^{\circ}$)

Consider circular edge-on orbit:

$\frac{\Delta t}{P} \approx \frac{2\left(R_{*}+r_{p}\right)}{2 \pi a} \approx \frac{R_{*}}{\pi a}$
Kepler's law : $a^{3}=G M_{*}\left(\frac{P}{2 \pi}\right)^{2}$
$\Delta t \approx \frac{P R_{e}}{\pi a}=\frac{P R_{s}}{\pi}\left(\frac{4 \pi^{2}}{G M P^{2}}\right)^{1 / 3}$
$=3 \mathrm{~h}\left(\frac{P}{4 \mathrm{~d}}\right)^{1 / 3}\left(\frac{R_{*}}{R_{\text {Sun }}}\right)\left(\frac{M_{*}}{M_{\text {Sun }}}\right)^{-1 / 3}$

Random Orbit Orientation

$$
d(\text { Prob })=\frac{\mathrm{d} \Omega}{4 \pi}=\frac{2 \pi \sin (i) \mathrm{d}(i)}{4 \pi}=\frac{\mathrm{d}(\cos (i))}{2}
$$

Transit Probability

Prob $\approx \frac{R_{*}}{a} \approx 0.005\left(\frac{R_{*}}{R_{\text {sun }}}\right)\left(\frac{1 A U}{a}\right)$

- Hot planets more likely to be detected.
- Prob $=0.5 \%$ at 1 AU, Prob $=0.1 \%$ at 5 AU (Jupiter's orbit)
- Prob $=10 \%$ at 0.05 AU (Hot Jupiters)
- Thousands of stars must be monitored to discover planets by spotting their transits.
(1) Spectral Type gives star mass and radius.
(2) Period (+ Kepler's law) gives orbit size.
(3) Depth of transit gives planet radius.

Models of planets with masses between $\sim 0.1 \mathrm{M}_{\mathrm{J}}$ and $10 \mathrm{M}_{\mathrm{J}}$, have almost the same radii (i.e. a flat mass-radius relation).
-> Giant planets transiting solar-type stars expected to have transits depths of around 1%
(4) Impact parameter $b=a \cos (i) / R_{*}$, determined from the shape of the transit, gives a measure of inclination angle.
(5) Bottom of light curve is not flat in all wave bands, providing a measure of stellar limb-darkening
(6) Since inclination is measured, can measure mass, not just lower limit $m_{p} \sin (i)$, from the radial velocity data.

Photometry at better than 1% precision is possible (not easy!) from the ground.
By 2000, over 20 independent ground-based searches for transiting planets were started.

SuperWASP, Tres, XO, HAT, OGLE have detected nearly all transiting planets. Mostly gas giant planets.

Transit depth for an Earth-like planet is:

$$
\left(\frac{R_{\text {Earth }}}{R_{\text {Sun }}}\right)^{2} \approx 8 \times 10^{-5}
$$

Photometric precision of $\sim 10^{-5}$ can be achieved from space.
May provide first detection of habitable Earth-like planets
French satellite Corot - launched 2006.
NASA's Kepler mission - launched 2009.
ESA mission PLATO - under review.
Transit Surveys

Wide

$$
D \sim 10 \mathrm{~cm} \quad \theta \sim 10^{\circ}
$$

$d \sim 300 \mathrm{pc} \Delta \theta \sim 30 \operatorname{arcsec}$
All-sky surveys
Small wideangle cameras survey bright nearby stars

$$
\begin{aligned}
& D \sim 1-4 \mathrm{~m} \quad \theta<1^{\circ} \\
& d \sim 1-4 \mathrm{kpc} \quad \Delta \theta \sim 1 \operatorname{arcsec}
\end{aligned}
$$

Galactic plane fields
Larger telescopes (narrow fields) survey
faint distant stars

Wide-Angle Transit Surveys Discovery Potential:

Assume HD 209458 (V=7.6 mag) is brightest.

mag	8	9	10	11	12	13
all sky	1	4	16	64	256	1024 Hot Jupiters!

100 x fainter -> 10 x farther -> 1000 x more targets.
How long to find them ?
All sky $=6008^{\circ} \times 8^{\circ}$ fields $\times 2$ months $/$ field
$\sim 100 / N$ years $\quad N=$ number of $8^{\circ} \times 8^{\circ}$ cameras

Need ~6 years for $\mathbf{N}=16$

Super-WASP: Hot Jupiters

Wide-Angle Search for Planets

UK WASP Consortium: Belfast, St.Andrews, Keele, Open, Leicester, Cambridge, IAC, SAAO. PI: Don Pollacco

SuperWASP All-Sky Survey

Typically ~ 5000 obs over 120 N per season per field

WASP's first 2 Hot Jupiters

Collier-Cameron et al. 2007

Astrophysical False Positives

Grazing binary

2 equal mass, equal size stars that just barely eclipse eachother. This causes a small dip in brightness which is approximately planet sized. However, the transit is V-shaped.

Observations taken with the JGT in St Andrews

M-dwarf secondary

Main sequence primary star, but massive M-dwarf secondary star (rather than planet mass secondary). Light curve is indistinguishable from a planet transit since late M-dwarfs are the same size as gas giant planets ($\mathrm{R}_{*} \sim 0.1 \mathrm{R}_{\text {sun }} \sim 1 \mathrm{R}_{\mathrm{J}}$).
Need RV to determine mass of the secondary object

Observations taken with the JGT in St Andrews

Star Spots

Multiple starspots tend to cause sine-like variations, not dips.
Starspots come and go, transiting planets are always there.

Sources of confusion

- A stellar binary can have an inclination such that the eclipsing secondary grazes the primary causing photometric dips very similar to those expected from planetary transits. Resolvable with multi-colour observations and spectroscopy
- Massive M-dwarf secondary, rather than a planet mass secondary
- Stellar spots - initally confusing but not permanent, different shape than a transit
- Line-of-sight blending with an eclipsing binary
- blending due to large pixel of survey telescope can be rejected with photometry
- unresolved blends require RV measurements and show variations with the "line-bisector"
- Giants stars showing dips in brightness. Secondary object would not be planet sized. Colors and proper motion of the star can distinguish giants from main sequence stars

[^0]: Needs luck - transits only occur if the orbit is almost edge-on

[^1]: Transit surveys find planets in small orbits around large parent stars.

