AS3012: Exo-Planetary Science

Tutorial Sheet 1

- 1. Estimate the flux ratio between the Sun and the Earth, as seen by a distant observer:
 - (a) In the visible, by assuming that the Earth directly reflects a fraction A of the Sun's photons back into space. (A is the albedo).
 - (b) In the infra-red at 10 μ m, by assuming that the Earth absorbs all incident stellar radiation, and reaches the equilibrium temperature at which this absorption is balanced by blackbody emission.

Possibly useful parameters: the Earth-Sun distance is $1 \text{ AU} = 1.5 \times 10^{11} \text{ m}$, the Solar radius is $R_{\odot} = 6.4 \times 10^{6} \text{ m}$, the Solar effective temperature is $T_{\odot} \approx 6000 \text{ K}$, the Planck function is

 $B_{\nu}(T) \propto rac{
u^3}{e^{h\,\nu/k\,T}-1} \ .$

- 2. Consider observing the Earth-Sun system at distance d=10 pc using an optical telescope with diameter D. Approximating the point-spread function as a Gaussian with diffraction-limited angular size $\Delta\theta \sim \lambda/D$, estimate D such that the Earth is detectable against the stellar glare. How can we do better by careful design of the instrumentation?
- 3. Future astrometric surveys (GAIA, SIM) are designed to achieve an accuracy $\sigma_{\theta} \approx 10^{-5}$ arcsec. For targets at d=10 pc (and 100 pc), show how the minimum detectable planet mass m_p scales with orbital radius a. Estimate the orbit radius beyond which astrometry becomes more sensitive than radial velocity searches.
- 4. Calculate the angular size of the Einstein Ring for an 0.3 M_{\odot} star at $D_L = 4$ kpc lensing a source in the Galactic Bulge at $D_S = 9$ kpc. If the source star has a radius $R_S = 10 R_{\odot}$, estimate the lens mass M_L for which the finite size of the source star leads to a breakdown of the point source approximation.
- 5. A planet with radius $r_p = 0.05 \ R_{\odot}$ orbits a main-sequence K star ($R_{\star} = 0.8 \ R_{\odot}$, $M_{\star} = 0.8 \ M_{\odot}$) at an orbital radius a = 0.5 AU. If the inclination angle of the planet's orbit to the plane of the sky is $i = 89.8^{\circ}$, calculate the duration and depth of an observed transit. What is the maximum orbital radius at which a transit would be detected?
- 6. Explain the concept of limb-darkening and how it affects the shape of a transit lightcurve.