Problem Solving

equation
$$s = f \sin q \approx fq$$

rearrange
$$q = s / f$$

check dimensions

$$\frac{\text{numbers}}{\text{with units}} \mathbf{q} = \frac{1 \text{ cm}}{10 \text{ m}} \times \frac{1 \text{ m}}{100 \text{ cm}} = 10^{-3} \text{ radians}$$

calculate

s = 1 cm

factors to change units

$$\times \frac{180^{\circ}}{p \text{ radians}} \times \frac{60 \text{ arcmin}}{1^{\circ}} = 3.4 \text{ arcmin}$$

Stars & Elementary Astrophysics: Introduction

Press F1 for Help

Problem Solving

- 1. Draw a simple picture (label with symbols)
- 2. Write an equation (check dimensions)
- 4. Re-arrange the equation
- 5. Insert numbers with units
- 6. Multiply by factors to obtain correct units
- 7. Does the result make sense?

Astronomical Instruments

Measure properties of incoming light

- Imaging direction
- Photometry brightness
- Spectroscopy wavelengths
- Polarimetry linear/circular polarisation
- Timing variations in all of the above

- <u>direct cameras</u>: record an image of an area of sky with stars, galaxies, ...
 - Schmidt telescopes:f/2 f/3, large fields 6° 16°
 - photographic plates
 - reflectors: prime focus ~ f/3
 Cassegrain focus ~ f/10
 fields < 1°, better image scale
 - electronic detectors (CCDs)

- photographic plates
 - --glass coated on front side with photographic emulsion
 - -large area (e.g. 35 135 cm)
 - -low efficiency (1-2%) 98% of light not recorded
 - -negatives digitized by laser scanner
 - e.g. Palomar Digital Sky Survey
 - UK Schmidt Telescope Survey

• electronic detectors

- Charge-Coupled Device (CCD)
- silicon chip; array of light-sensitive squaresPIXELS (+readout electronics)
- pixel size ~15 15 mm
- format ~ 1024 1024 pixels up to 4096 14096 pixels
- small area: postage stamp
- ~ 75-90% efficiency
- digital images read direct from CCD
- expensive

A Charge-Coupled Device, CCD

Stars & Elementary Astrophysics: Introduction

photometry:

- measure apparent brightnesses of sources
- filters select a range of wavelengths
- narrow~1 nm broad~100 nm
- photomultiplier tube
 - -~20% efficiency
 - counts individual photonshigh speed (e.g. milliseconds)
 - one star at a time
 - (focal plane pinhole)

CCD camera:

- -< 1% accuracy</p>
- ->10s time resolution
- -~10,000 sources per CCD image
- digitized photographic plates
 - 5-10% accuracy
 - exposure time ~ hours
 - millions of sources per Schmidt plate

Stars & Elementary Astrophysics: Introduction

Press F1 for Help

spectroscopy:

- spectrograph / spectrometer with prism or diffraction grating to disperse light into a spectrum
- record spectrum with a CCD

(polarimetry, spectropolarimetry use instruments together with a polariser)

Dispersing light into a spectrum

Prism

Grating

Diffraction Grating

Constructive interference if path difference = $d \sin q = ml$

Diffraction Grating

Constructive interference if path difference = $d \sin q = ml$

A typical spectrograph

Stars & Elementary Astrophysics: Introduction

Press F1 for Help

Spectrum of a star

Spectrum of a star

Stars & Elementary Astrophysics: Introduction

Press F1 for Help

- <u>Ultraviolet studies</u> from satellites
 - reflecting telescopes with smoother mirrors
 - CCDs not sensitive to ultraviolet, so use photon-counting electronic detectors
 - Hubble Space Telescope (HST)
 - 0.05 arcsec resolution (after repair!)
 - 2.4 metre diameter mirror
 - UV spectrometer; direct imaging
 - (also optical and infrared)
 - EUVE = Extreme UltraViolet Explorer
 - FUSE = Far UltraViolet Explorer

Telescopes and detectors for high-energy radiation

- gamma rays **g**rays $I < 0.01 \ nm (10^{-11} \ m)$
- X-rays -- hard: **I** ~ 0.01 0.1 *nm*
 - soft : **I** ~ 0.1 10 nm
- PROBLEM:
 - will not reflect from ordinary mirrors
 - nested rings of highly polished mirrors using GRAZING REFLECTION

Schematic X-ray Telescope

nested parabolic and hyperbolic mirrors

detectors:

grays

- scintillation detectors (e.g. Nal crystal)
- several layers convert grays by photoelectric effect into visible light detectable by photomultiplier

X-rays

- now mainly solid-state detectors like CCDs
- hence measurable current of electrons proportional to X-ray flux density

recent satellites for high-energy radiation studies:

Compton gamma-ray observatory - 1991 ROSAT (Röntgen satellite) - X-ray studies - 1992 YOKHOH - X-ray studies of the Sun - 1993 RXTE (Rossi X-ray timing explorer) - 1996 Chandra - X-ray spectroscopy - 1999 XMM-Newton - X-ray imaging - 1999