Line Strengths and Widths

each line has different strength (quantum mechanics)
more ions --> stronger line

Equivalent Width

Measures line strength, NOT line width.
E.W. = width of rectangle with same area as line.

Units: nm

Same width, different equivalent width.
$\lambda=\lambda_{0}$

Doppler Shift

Doppler (1843) for sound.

rest wavelength: λ_{0} velocity: v
redshift: $z=\frac{\Delta \lambda}{\lambda_{0}}=\frac{\lambda-\lambda_{0}}{\lambda_{0}} \approx \frac{v}{c}$
redshifted: $z>0$ receding
blueshifted: $z<0$ approaching

Doppler Shift

- Example: $v=200 \mathrm{~km} \mathrm{~s}^{-1}, \lambda_{0}=500 \mathrm{~nm}$
$\Delta \lambda=\frac{v}{c} \lambda_{0}=\frac{200 \mathrm{~km} \mathrm{~s}^{-1}}{3 \times 10^{5} \mathrm{~km} \mathrm{~s}^{-1}} \times 500 \mathrm{~nm}=0.3 \mathrm{~nm}$
- small shift, so no colour changes.
- unless $v \sim c$ (near a black hole, or relativistic jet)
- Cosmological redshifts can be large:

$$
\lambda=\lambda_{0}(1+z)=(121 \mathrm{~nm})(1+6)=848 \mathrm{~nm}
$$

- Big Bang $T=\frac{T_{0}}{1+z} \approx \frac{3000 \mathrm{~K}}{1100} \approx 2.7 \mathrm{~K}$

Thermal Broadening

 random motions of atoms

 λ_{0}

Rotational Broadening

Pressure Broadening

Energy levels shift when particles are nearby

\bigcirc
high pressure gas

Zeeman Shift

Energy levels shift and split in Magnetic field

magnetic field

Quantum Uncertainty

"fuzzy" energy levels short visit
-> uncertain E

$\Delta E \Delta t \approx h$
$h=4.1 \times 10^{-15} \mathrm{eV}$ sec

Why spectra differ

- Line strengths (EW ratios) change mainly due to SURFACE TEMPERATURE (hot-> high ionisation and excitation cool-> neutral atoms and molecules)
- Some line widths and ratios change with LUMINOSITY
- Very little range of abundances
($74 \% \mathrm{H}+24 \% \mathrm{He} 2 \%$ everything else)

Spectral Classification

- 1890s first photographic spectra
- 1918-24 Henry Draper Catalogue "spectral classes" of ~ 225,300 stars !!! (star names HD 35311, HD 209458, etc)
- original classification:
$A, B, \ldots R, S$ from simple to complex lines
- many letters later dropped or merged.
- 1920s photometry (colour indices) revealed correct temperature sequence
- confirmed by atomic physics
- 1940s Morgan \& Keenan (MK spectral types)
- handout:
- spectral classes provide a "short-hand" description of the appearance of a stellar spectrum.

Spectral Types

hot cool
O B A F G K M (Oh! Be A Fine Girl Gis, Kiss Me!) ("early-type" "late-type")

- sub-class 0-9 e.g. B0, B9, G2

Spectral Types

hot
cool

O B A F G K M

(Oh! Be A Fine Girl Guy, Kiss Me!)
("early-type" "late-type")

- sub-class 0-9 e.g. B0, B9, G2
$(\mathrm{NRS}$ (No Romeo, Scram))
* one example of a luminosity criterion:
- H lines of Balmer series are affected strongly by pressure broadening
- pressure gradient \propto surface gravity of star g

$$
g=\frac{G M}{R^{2}}
$$

($M=$ mass, $R=$ radius, $G=$ gravitational constant)

- dwarf star, small R, large $g \Rightarrow$ broadened H lines
- giant star, large $R(\sim 100 \times)$, small $g \Rightarrow$ narrow H lines
- (handout: spectra showing luminosity effects)

Luminosity Classes

MK Spectral Types

\author{

- e.g. Sun
 Vega
 Betelgeuse
 Rigel
 Aldebaran
}

G2 V
A0 V
M2 Iab
B8 Ia
K5 III

Review

- Multicolour Photometry
- Use filters (e.g. UBVRI)
- measure flux densities: $\left(f_{B}, f_{V}, \ldots\right)$
- apparent magnitudes: (B, V, \ldots)
- colour indices :
$(B-V)=-2.5 \log \left[f_{B} / f_{V}\right]+$ constant
- absolute magnitudes (d from parallax):

$$
M_{V}=V-5 \log (d / 10 \mathrm{pc})
$$

Bolometric Magnitude

$M_{\text {bol }}=$ absolute bolometric magnitude total flux over the entire spectrum.

Difficult to measure $M_{\text {bol }}$.
Easy to measure M_{V}.

Bolometric Corrections

- B.C. $=M_{\text {bol }}-M_{V}<0$ to make star brighter.
- Sun: $M_{V}=4.83$, B.C. $=-0.14 \quad M_{\text {bol }}=4.69$

$$
\begin{array}{lrr}
\text { FOV } & \text { B.C. } & =0 \\
\text { O5V } & & \text { (most optical) } \\
& =-3.8 & \text { (mostly UV } \\
\text { M8V } & & =-4.0
\end{array} \quad \text { mostly IR) }
$$

$$
\frac{L}{L(\text { sun })}=10^{-0.4}\left(M_{b o l}-M_{b o l}(\text { sun })\right)
$$

$$
M_{b o l}-M_{b o l}(\text { sun })=-2.5 \log \left(\frac{L}{L(\text { sun })}\right)
$$

Calibrations

- Calibrations of colour indices, temperatures, absolute visual magnitude (M_{V}), and (less precise) spectral types
- very well defined for most main-sequence stars (5,000 $\leq T \leq 30,000 \mathrm{~K}$)
- less so for hotter O stars (> 40,000 K)
- and cooler M stars (<2,500 K)
(handout: example of relevant calibrations)
- The Hertzsprung-Russell (HR) Diagram
- first presented independently by H (1911) and $R(1913)$ to show links between spectral types (or colours) of stars and absolute magnitudes
- now recognised as one of the most important diagrams for all astronomy, because of its importance for understanding the evolution (ageing) of stars
- (handout: HR diagram)

Theory vs Observations

- Alternative versions of the H-R diagram:

