
5. Conservation of momentum

Rate of change of momentum = sum of forces

• 5.1 What are the forces acting on a parcel
of fluid?

• For any surface within a fluid there is a
momentum flux across it (from each side)
that has nothing to do with any bulk flow
but is a consequence of its thermal
properties.

• Microscopically (in a perfect gas)

– finite temperature imparts molecules

with random motions

–  the pressure is the associated (one

sided) momentum flux.

• Since these motions are isotropic, the

momentum flux locally is:

–  independent of the orientation of the

surface

– always perp. to the surface (the parallel

components cancel out).



• Quick check on units:

• Pressure is a force per unit area

• P~F/A

• Momentum flux is the rate of flow
(rate of change) of momentum
through unit area:

• (Momentum/s) / A

• And force is rate of change of
momentum…

5.2 Deriving the equation

• Consider a lump of fluid subject to
gravity and the inward pressure of the
surrounding fluid

• Pressure force on dS = - pdS

– (minus because along inward normal)

• Component of inward pressure force
along some direction         isn
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• Integrate over the whole
surface
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Divergence theorem

• The total momentum in the volume V is:

• The rate of change is:

• The component along     is:
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• Hence equation of motion in direction      is
(rate of change of momentum=sum of forces)
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• But note that

• And (assuming lump is small) replace

• So that
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• Hence momentum conservation reduces to
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• Since this is true for all !V and

• Lagrangian form: momentum of a fluid element
changes in response to pressure and gravitational
forces

n
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• Eulerian form:

• The momentum contained in a fixed grid cell
changes as a result of pressure and gravitational
forces plus any imbalance in the momentum
flux in and out of the cell.
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Example

• Consider a flow u=ux along a pipe in the

absence of gravity

• (5.2) gives:
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• The component along the pipe is

• If the fluid is incompressible, this gives
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“ram pressure” thermal pressure

• Note: the thermal pressure is associated with
random motions in the fluid which are isotropic. It
is a scalar (acts the same way in any direction)

• The ram pressure is associated with bulk motions
of the fluid. Only a surface whose normal has
some component along the direction of flow feels
the ram pressure.

– Try putting your hand at the end of a hosepipe! Then
rotate it till it’s parallel to the flow…you only feel the
ram pressure when the flow is “hitting” your hand.



Question 3

• Consider the velocity given in question 1:

• Determine (for a steady state) the density
variation

• And the pressure variation                      in
the absence of gravity.
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